A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

D'Elia, A.

Paper Title Page
THP033 Superconducting Sputtered Nb/Cu QWR for the HIE-ISOLDE Project at CERN 827
 
  • S. Calatroni, P. Costa Pinto, A. D'Elia, L.M.A. Ferreira, G. Lanza, M. Pasini, M. Scheubel, M. Therasse
    CERN, Geneva
  • R.E. Laxdal, V. Zvyagintsev
    TRIUMF, Vancouver
 
 

For the foreseen intensity and energy upgrade of the ISOLDE complex at CERN (HIE-ISOLDE project) a new superconducting LINAC based on sputtered Nb/Cu Quarter Wave Resonators (QWRs) of two different beta families will be installed in the next three to five years. A prototype cavity of the higher beta family is currently being developed. In this paper we will discuss the latest developments on the sputtering technique for this kind of cavity geometry. First cold RF measurements will be reported.

 
MOP002 A High Phase Advance Damped and Detuned Structure for the Main Linacs of CLIC 49
 
  • R.M. Jones, A. D'Elia, V.F. Khan
    UMAN, Manchester
  • A. Grudiev, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

We report on the suppression of long-range wakefields in the main linacs of the CLIC collider. The wakefield is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. This unique accelerator, in the process of being fabricated, will be the first structure to demonstrate wakefield damping and the ability to sustain high accelerating gradients for CLIC. This serves as an alternative to the baseline CLIC design, which at present relies entirely on heavy damping. Detailed simulations are presented, on both the optimised surface fields resulting from the monopole mode, and from wakefield damping of the dipole modes. Preparations for the fabrication of a structure, suitable for high power testing, are also discussed. This design takes into account practical mechanical engineering issues and is the result of several optimisations since the original CLICDDS proposal[*].


*V.F. Khan and R.M. Jones, Presented at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009.