A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bravin, E.

Paper Title Page
TUP101 Wire Grid and Wire Scanner Monitors Design for the CERN LINAC 4 650
 
  • F. Roncarolo, E. Bravin, M. Duraffourg, C. Dutriat, G.J. Focker, U. Raich, VC. Vuitton
    CERN, Geneva
  • B. Cheymol
    Université Blaise Pascal, Clermont-Ferrand
 
 

As part of the CERN LHC injector chain upgrade, LINAC4 will accelerate H- ions from 45 keV to 160 MeV. A number of wire grids and wire scanners will be used to characterize the beam transverse profile. This paper covers all monitor design aspects intended to cope with the required specifications. In particular, the overall measurement robustness, accuracy and sensitivity must be satisfied for different commissioning and operational scenarios. The physics mechanisms generating the wire signals and the wire resistance to beam induced thermal loads have been considered in order to determine the most appropriate monitor design in terms of wire material and dimensions.

 
THP006 Accuracy Determination of the CERN LINAC4 Emittance Measurements at the Test Bench for 3 and 12 MeV 767
 
  • F. Roncarolo, E. Bravin, U. Raich
    CERN, Geneva
  • B. Cheymol
    Université Blaise Pascal, Clermont-Ferrand
 
 

The CERN LINAC4 commissioning will start in 2011, at first in a laboratory test stand where the 45 KeV H- source is already installed and presently tested, and later in the LINAC4 tunnel. A movable diagnostics bench will be equipped with the necessary sensors capable of characterizing the H- beam in different stages, from 3 MeV up to the first DTL tank at 12 MeV. In this paper we will discuss the accuracy of the transverse emittance measurement that will be performed with the slit-grid method. The system's mechanical and geometric parameters have been determined in order to achieve the required resolution and sensitivity. Space charge effects during the beam transfer from the slit to the grid and scattering effects at the slit have been considered to determine the overall emittance measurement accuracy.

 
THP007 Overview of the CERN LINAC4 Beam Instrumentation 770
 
  • F. Roncarolo, G. Bellodi, E. Bravin, B. Dehning, M. Duraffourg, G.J. Focker, D. Gerard, E.B. Holzer, LF. Lenardon, U. Raich, L. Søby, M. Sordet, J. Tan, G. Tranquille, VC. Vuitton, C. Zamantzas
    CERN, Geneva
  • B. Cheymol
    Université Blaise Pascal, Clermont-Ferrand
 
 

The CERN LINAC4 will represent the first upgrade of the LHC injection chain, by accelerating H- ions from 45 KeV to 160 MeV for charge-exchange injection into the PS Booster. In order to provide its safe and efficient commissioning and operation, a wide variety of beam diagnostics devices has been designed for installation at convenient locations all over the accelerator length and in the transfer line to the PS Booster. This paper gives an overview of all instrumentation devices, including those to measure beam position, transverse and longitudinal profile, beam current and beam loss. The well advanced status of the system design and the main instrument features are discussed.