A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Beutner, B.

Paper Title Page
TUP009 First Commissioning Experience at the SwissFEL Injector Test Facility 410
 
  • T. Schietinger, M. Aiba, B. Beutner, M. Dach, A. Falone, R. Ganter, R. Ischebeck, F. Le Pimpec, N. Milas, P. Narang, G.L. Orlandi, M. Pedrozzi, S. Reiche, C. Vicario
    PSI, Villigen
 
 

The Paul Scherrer Institute is commissioning a 250 MeV injector test facility in preparation for the SwissFEL project. Its primary purpose is the demonstration of a high-brightness electron beam meeting the specifications of the SwissFEL main linac. At the same time it is advancing the development and validation of the accelerator components needed for the realization of the SwissFEL facility. We report the results of the first commissioning phase, which includes the gun section of the injector up to 7 MeV electron energy. Electrons are generated by a 2.6-cell laser-driven photocathode RF gun operating at 3 GHz followed by an emittance compensating focusing solenoid. The diagnostic system for this phase consists of a spectrometer dipole, a series of screens and beam position monitors and several charge measuring devices. Slit and pinhole masks can be inserted for phasespace scans and emittance measurements. The completion of the entire injector facility proceeds in three stages, culminating with the integration of the magnetic compression chicane expected for early 2011.

 

poster icon

Poster

 
TUP102 Phase Space Analysis at the SwissFEL Injector Test Facility 653
 
  • B. Beutner, R. Ischebeck, T. Schietinger
    PSI, Villigen
 
 

Phase I of the SwissFEL Injector Test Facility consists of a 2.6-cell S-band RF gun, a spectrometer, and a series of transverse beam diagnostic systems such as YAG screens, slit and pepper-pot masks. Its primary purpose is the demonstration of a high-brightness electron beam meeting the specifications of the SwissFEL main linac. Phase space characterization at beam energies up to 7 MeV, where space charge still dominates, is performed with YAG screens in combination with slit- and pinhole (pepper-pot) masks. Advanced image analysis is used to mitigate artefacts due to background, pixel readout noise, or dark current. We present our data analysis procedure for the slit scan method, with particular emphasis on image processing and its effect on the reconstructed emittance. Pepper-pot measurements using an independent analysis framework are used to cross-check the slit scan results.

 
TUP103 Profile Monitors for the SwissFEL Injector Test Facility 656
 
  • R. Ischebeck, B. Beutner, G.L. Orlandi, M. Pedrozzi, T. Schietinger, V. Schlott, V.G. Thominet
    PSI, Villigen
 
 

The SwissFEL Injector Test Facility consists of an RF gun, an accelerating section for a final energy of 250 MeV, and two diagnostics sections. Transverse profiles of the electron beam can be recorded at 27 locations by imaging fluorescent crystals that can be inserted into the beam. At 21 of these, the fluorescent screens are complemented by optical transition radiation monitors and wire scanners. Here, we will evaluate the performance of transverse profile monitors experimentally and numerically and compare the measured profiles with a numerical model of the accelerator. Profile monitors are used in conjunction with a slit and a pepper pot to determine the transverse phase space distribution of the bunches. Experimental measurements at the SwissFEL Injector Test Facility will be presented.