A NEW LOCAL FIELD QUANTITY DESCRIBING THE HIGH GRADIENT LIMIT OF ACCELERATING STRUCTURES

THP063

A. Grudiev, W. Wuensch CERN, Geneva, Switzerland

LINAC'08

Breakdown initiation scenario

Qualitative picture

- Field emission currents J_{FN} heat a (potential) breakdown site up to a temperature rise ΔT on each pulse.
- After a number of pulses the site got modified so that J_{FN} increases so that ΔT increases above a certain threshold.
- Breakdown takes place.

This scenario can explain:

- Dependence of the breakdown rate on the gradient (Fatigue)
- Pulse length dependence of the gradient (1D÷3D heat flow from a point-like source)

New rf breakdown constraint S_c

$$S_c = \text{Re}\{S\} + \text{Im}\{S\}/6$$

$$S_c = 4 \div 5 \text{ [MW/mm}^2\text{]}$$

at 200ns, BDR=1e-6
 $S_c^{15}t_p^5/\text{BDR} = \text{const}$