

The SARAF CW 40 MeV Proton/Deuteron Accelerator

A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. Weissman Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler, F. Kremer, C. Piel, P. vom Stein Accel Instruments, Bergisch Gladbach, Germany

LINAC08, MO203, September 29th, 2008

SARAF – Soreq Applied Research Accelerator Facility

- To modernize the source of neutrons at Soreq and extend neutron based research and applications.
- To develop and produce radioisotopes primarily for bio-medical applications.
- To enlarge the experimental nuclear science infrastructure and promote the research in Israel.

Accelerator Basic Characteristics

A RF Superconducting Linear Accelerator

Parameter	Value	Comment		
Ion Species	Protons/Deuterons	M/q ≤ 2		
Energy Range	5 – 40 MeV			
Current Range	0.04 – 2 mA	Upgradeable to 4 mA		
Operation mode	CW and Pulsed	PW: 0.1-1 ms; rep. rate: 0.1-1000 Hz		
Operation	6000 hours/year			
Reliability	90%			
Maintenance	Hands-On	beam loss < 1 nA/m		

SARAF Layout

A. Nagler et al., LINAC 2006

SARAF project organization

Construction and Commissioning of a (Beyond-)State-of-the-Art accelerator within an international business collaboration

- Accelerator Accel Instruments (Germany)
- Cryogenics Linde Kryotechnik (Switzerland)
- Building and Infrastructure U. Doron (Israel)
- Applications Soreq

SARAF Phase I – Upstream View

SARAF Phase I – Downstream View

9/29/2008

EIS: measured emittance values

$\epsilon_{\text{rms_norm._100\%}}$ [π mm mrad]

Particles Beam current	Protons X / Y	H₂+ X / Y	Deuterons X / Y
5.0 mA	0.20 / 0.17	0.34 / 0.36	0.13 / 0.12
2.0 mA	0.13 / 0.13	0.30 / 0.34	0.14 / 0.13
0.04 mA	0.18 / 0.19		0.05 / 0.05

Specified value = 0.2 / 0.2 [π mm mrad]

emittance analysis with the SCUBEEx code by M. P. Stockli and R.F. Welton, Rev. Sci. Instr. 75 (2004) 1646 A. Nagler et al., LINAC08, MO203 9/29/2008 11

9/29/2008

RFQ commissioning results

Specifications in parentheses

Parameter	Protons		
Output energy [MeV/u]	1.5 (1.5)		
Maximal CW current [mA]	4.0 (4.0)		
Transverse emittance, r.m.s.,			
normalized, 100% [π·mm·mrad]			
(at 0.5 mA, closed LEBT aperture)	0.17 (0.30)		
(at 4.0 mA, open LEBT aperture)	0.25 / 0.29 (0.30)		
Longitudinal emittance, r.m.s [π·keV·deg/u]			
(at 3.0 mA)	30 (120)		
Transmission [%] (at 0.5 mA)	80 (90)		
(at 2.0 mA)	70 (90)		
(at 4.0 mA)	<mark>65</mark> (90)		
Required RF power (protons) [kW]	<mark>62</mark> (55)		
(deuterons) [kW]	248 (220)		

Diagnostic plate (D-Plate) for beam commissioning

Proton energy at RFQ exit by TOF

Beam Energy Measurement using TOF between 2 BPMs sum signals, 145 mm apart, $E = 1.504 \pm 0.012 \text{ MeV}$

C. Piel PAC 2007

SOREQ

1 00 500 mV/ <u>n.</u> 500 mV7 MEBT-BPM-2 MEBT-BPM-1 sum signal sum signal ΔT = 3.63ns - 0.76ns(ΔL_{cable}) = 2.87ns => 1.504MeV 4 0 F T 800 mV H 13 35 1.00 ns. 1.6760 ns

Button pickup for 2 mA pulse and 15 mm bore radius gives a signal high above noise.

Bunch width measured at β=0.056 is larger than the predicted value due to the induced charge broadening.

9/29/2008

A. Nagler et al., LINAC08, MO203

Current downstream RFQ vs. RFQ forward power for 3 mA injection

Optimum power for p = 61.5 kW

Approximated rms ε_z extracted from bunch width measurements

Specified rms $\varepsilon_z = 120 \pi \text{ deg keV}$ Value for simulations = 74 $\pi \text{ deg keV}$

Parting from the linear relation indicates onset of dark current due to poor conditioning

RFQ Conditioning – current status

A few hundred conditioning hours for two years

Conditioning schemes

- Set maximum power and increase duty cycle
- Set CW duty cycle and increase power
- Special actions to improve conditioning rate:
 - Rounding off sharp edges of rods bottom part
 - Cleaning of rods
 - Installation of circuit for fast recovery after sparks
- Maximal power reached so far:
 - 195 kW CW
 - 280 kW with duty cycle of 15%

75°C baking performed recently for 3 days. Effect on conditioning tp be measured soon

Prototype SC Module (PSM)

HWR – Basic parameters

- f = 176 MHz & bandwidth ~ 130 Hz
- height ~ 85 cm high
- Optimized for β=0.09 @ first 12 cavities (2 modules) β=0.15 @ 32 cavities (4 modules)
- Bulk Nb 3 mm @ 4.45 K
- $E_{peak, max} = 25 \text{ MV/m}$ & $E_{peak} / E_{acc} \sim 2.5$
- Q₀ ~ 10⁹
- Designed cryogenic Load < 10 W ($@E_{max}$)

OREQ

HWR measured fields and dissipated power

Closed loop operation with a voltage controlled oscillator (VCO)

At Accel (single cavity)

At Soreq (inside PSM)

Ca	vity		vertical Tes	t	max field	limit	Q at	Q at	losses at	losses at
location	name	max field	losses at	Q at			20 MV/m	25 MV/m	20 MV/m	25 MV/m
		[MV/m]	25 MV/m	25 MV/m	[MV/m]				[W]	[W]
			[W]							
HWR1	LB-2	40	7,3	6,0E+08	30		8,0E+08	7,0E+08	3,5	6,3
HWR2	LB-3	43	7,3	6,0E+08	28	coupler temp.	2,0E+08	1,4E+08	14,1	31,4
HWR3	LB-5	33	6,3	7,0E+08	32		4,0E+08	2,0E+08	7,0	22,0
HWR4	LB-7	46	6,3	7,0E+08	29		4,0E+08	2,0E+08	7,0	22,0
HWR5	LB-4	36	5,5	8,0E+08	31		7,0E+08	4,0E+08	4,0	11,0
HWR6	LB-6	38	7,3	6,0E+08	29	coupler temp.	7,0E+08	3,0E+08	4,0	14,7
		sum	40,0					Σ	39,7	107,3
arget v	alues	25		4.7E+08	25			4.7E+08		72

Phase and amplitude stability results

SARAF LLRF: Generator driven resonator (GDR)	Cavity	Vcav, MV	Epeak, MV/m	Phase Stab.,°	Ampl. Stab., %
cavity tuning loop	HWR 1	0.8	23.5	±0.3	0.5
	HWR 2	0.7	20.6	±0.3	0.5
	HWR 3	1.0	29.5	±0.3	0.5
	HWR 4	0.9	26.5	±0.3	0.5
	HWR 5	1.14	33.5	±0.2	0.5
	HWR 6	1.03	30.3	±0.3	0.3

- Above results are for operation of one cavity at a time
- Stability measurement period was a few minutes for each cavity
- Stability values are peak-to-peak and are limited by ADC least significant bit

Recent commissioning: simultaneous operation of 6 HWRs at ~20 MV/m for several hours

Residual activation from beam loss

A beam loss value of 0.4 nA/m at 40 MeV generates 2 mRem/hr after a 1 year irradiation

Conditions

- 30 cm from beam line
- 4 hours after shutdown
- Effects of 40 MeV applied for entire linac
- Accelerator is operating 365 days per year (~65%)
- Run deuterons at 40 MeV all the time (25-50%)
- Accelerator made entirely of stainless steel (~50% Nb)

SARAF Phase II simulations with error analysis

Simulations shown in next slides:

• 4 mA deuterons at RFQ entrance.

Last macro-particle=1 nA

B. Bazak et al., Submitted for Publication J. Rodnizki et al., HB2008

Component	Error	Static	Dyn.
Quadrupole Magnets	Misalignment x,y,z [mm]	± 0.2	
	Rotation θ [mrad]	± 3	
	Magnetic field [%]	± 2	0.5
Solenoids	Misalignment x,y,z [mm]	± 0.2	
	Magnetic field [%]	± 2	0.5
HWR	Misalignment x,y,z [mm]	± 0.4	
	Rotation θ [mrad]	± 6	
	Field strength [%]	± 2	0.5
	Phase [degree]	± 1	0.25

Errors are double than in: J. Rodnizki et al. LINAC 2006, M. Pekeler HPSL 2005

A. Nagler et al., LINAC08, MO203

Deuteron beam envelope radius at SARAF SC Linac

B. Bazak *et al.*, Submitted for Publication J. Rodnizki *et al.*, HB2008

General Particle Tracer 2.80 2006, Pulsar Physics S.B. van der Geer, M.J. de Loos http://www.pulsar.nl/

9/29/2008

A. Nagler et al., LINAC08, MO203

Summary and Outlook

- SARAF Phase I Commissioning status:
 - Extensive proton beam commissioning through RFQ performed
 - First deuteron and H₂⁺ beams accelerated in RFQ
 - On-going RFQ RF conditioning to enable CW deuteron and H₂⁺ beams
 - RF commissioning of the PSM to enable beam acceleration through it

Simulations of Phase II

- Beam loss criterion for hands-on maintenance is 0.4 nA/m at 40 MeV
- Tail emphasis simulations indicate beam loss below 1 nA/m