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Abstract 
In order to achieve beam intensity and luminosity 

requirements, pulsed LINAC accelerators have stringent 
requirements on the amplitude and phase of RF cavity 
gradients. The amplitude and phase of the RF cavity 
gradients under heavy beam loading must be kept 
constant within a fraction of a % and a fraction of a 
degree respectively. The current paper develops a 
theoretical method to calculate RF parameters that 
optimize cavity gradients in multi cavity RF units under 
heavy beam loading. The theory is tested with a 
simulation example.  

INTRODUCTION 
Modern pulsed LINAC accelerators are being designed 

taking advantage of the cost reduction that can be 
achieved powering a string of cavities from one klystron. 
At 70% peak power utilization a 10 MW klystron can 
power 24 superconducting cavities at an average gradient 
of 31.5MV/m and a beam current of 9 mA. The XFEL 
main LINAC klystrons at DESY will power 32 cavities at 
23.6MV/m and an average beam current of 5mA. As 
multiple cavities are connected to a single klystron the RF 
system parameters and control become more complex. A 
typical low level RF (LLRF) control loop controls the 
amplitude and the phase of the klystron’s RF power, 
however, the loop cannot dynamically control individual 
cavity amplitude and phases. Typically, the control is 
done over the vector sum of all cavity gradients within the 
RF unit. The problem is further complicated by the need 
to obtain the maximum possible acceleration from the RF 
unit, pushing cavity gradients up close to their quenching 
limits.  These cavity maximum gradients are different 
within a certain spread. Proton LINACs such as HINS [5] 
and Project X [6] add extra complexity to the RF system. 
A RF unit may need cavities operating at different 
synchronous phases (Φs). Secondly, particles travel 
cavities at increasing (non-relativistic) velocities, which 
implies different beam loading conditions from cavity to 
cavity. 

Most of the literature available on cavity field dynamics 
follows a steady state approach [1-4]. The cavity is 
modeled by a 2nd order ODE (ordinary differential 
equation) and later approximated by a 1st order ODE 
model due to the high loaded Q of the cavity. The steady 
state approach determines optimality conditions for 
minimum generator power as a function of the cavity 
coupling parameter βopt and cavity tuning angle φopt. 
The steady state analysis works well for continuous  

Figure 1: RF system block diagram. 

waveform (CW) machines.  A similar steady state 
assumption is assumed about the beam, and these models  
use the average beam current. 

The steady state analysis applied to pulsed RF Linacs 
does not provide optimum operation parameters for all 
cases. For cavities operating “on crest” (Φs=0) under 
heavy beam loading and strong RF coupling an exact 
calculation of the forward power and beam injection time 
can set constant cavity gradients (flattops) and minimize 
or zero out the reflected power. For “on crest” operation, 
gradient flattops can still be maintained for cavities 
operating at different gradients with one time optimization 
of the coupling parameter. Unfortunately, this is not 
longer valid when cavities in the same RF unit need to be 
operated at different synchronous phases. Moreover, as is 
the case for pulsed RF proton beam Linacs such as HINS 
[5] and Project X [6], cavities have different beam loading 
conditions. To exemplify the theory that will be 
developed in this paper we use one RF unit from the 
Project X proposal. The RF unit has 3 cryomodules with a 
total of 21 cavities operating with synchronous phases and 
beam loadings as described in Table 1. A typical ±10% 
Vcav spread is assumed. 

Table 1: Example Using a Project X RF Unit 

Cavity 
Number 

Beam 
Beta In 

Beam Beta 
Out 

Cavity 
Phase 

(degrees) 

Cavity 
voltage 
(MV/m) 

182 0.9196 0.9208 -20 23.22  
183 0.9208 0.9220 -20 25.62  
184 0.9220 0.9232 -20 24.90  
185 0.9232 0.9243 -20 27.30  
186 0.9243 0.9255 -20 23.46  
187 0.9255 0.9266 -19 26.34  
188 0.9266 0.9277 -19 24.66  
189 0.9277 0.9288 -19 24.18  
190 0.9288 0.9299 -19 26.58  
191 0.9299 0.9309 -19 22.74  
192  0.9309 0.9320 -18 27.54  
193 0.9320 0.9330 -18 25.38  
194 0.9330 0.9340 -18 24.42  
195 0.9340 0.9350 -18 26.82  
196 0.9350 0.9360 -18 25.86  
197 0.9360 0.9370 -17 22.98  
198 0.9370 0.9380 -17 23.94  
199 0.9380 0.9389 -17 25.14  
200 0.9389 0.9398 -17 23.70  
201 0.9398 0.9407 -17 26.10  
202 0.9407 0.9416 -16 27.06  
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The steady state optimization minimizes the klystron 
reflected power during beam-on time using [1-4]: 

s
cav

b
opt V

RI φβ cos21 0+=
 

and sopt φϕ −=  

Table 2 introduces the RF system parameters. For a 
description of these parameters see [1-4]; 

Table 2: RF System Parameters 
Symbol Definition 
� RF Coupling coefficient 
�� Cavity detuning 
�12 Cavity half bandwidth 
R Cavity shunt impedance 
RL Loaded resistance 
Ig Generator current 
Ib Beam current 
� Generator current phase 

 

 
Figure 2: a) Cavity, vectorsum and vectorsum setpoint 
amplitude voltages, b) cavity phases, c) RF forward, 
reflected and beam powers. 

A simulation of the steady state optimum parameters 
using the RF unit example described above gives 
gradients and powers as shown in Fig. 2. The simulator 
used is based on the 1st order dynamic models described 
in [1-4]. Also a ±10% uniformly distributed maximum 
cavity gradient spread has been assumed around the 
required average cavity gradient for the RF unit. We 
observe that although the reflected power is small the 
individual cavity amplitudes and phases are neither 
constant nor close to the set-point values. Also the 
vectorsum (Fig. 2a black trace) is far away from the 
vectorsum set-point (Fig. 2a blue trace). As a 
consequence, when the feedback loop is closed the 
individual cavity gradients are further distorted to 
accommodate the vectorsum to the setpoint. The LLRF 
closed loop is unable to control cavity voltages to 
individual set-points because the system is uncontrollable 
at the individual set point level. 

TRANSIENT ANALYSIS 
The RF system voltages and currents are modeled by 
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The RF voltages and currents in (1) are modulated in 
amplitude and phase. The LLRF controls the slow 
dynamics of the RF amplitude and phase called the RF 
envelope. The RF envelope is typically modeled by a 1st 
order ODE in the complex space C 1 [4]. 

)()()( tBItAVtV totcavcav +=& ,   (2) 

As said, V and I are complex numbers, and  
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Since the system is linear, the cavity voltage is the 
superposition of the cavity response to the generator and 
beam currents (power) θj

g eI and πj
beI . The current 

equations assume the convention that the phase is zero for 
the negative of the beam current. 

The solution to equation (2) is given by: 
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(3) 
 

Where u(t) is the Heaviside function (i.e. u(t)=1 t≥0 and 
0 otherwise). 

To obtain a flattop at the injection time t=t0 we must 
eliminate the time dependency in equation (3). That is 
achieved by making 

b
t
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 (4) and 0t
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(5) 

Equations (4) and (5) guarantee a flattop for t≥ t0. The 
appropriate value for the flattop amplitude and phase can 
be obtained from equation (3) at t=t0-. This is given by 
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Using the tuning angle equation 12
tan ω

ωψ Δ= , the complex 
cavity voltage in (6) can be by its amplitude and phase 

( )( )
( )( )2

2

tan1

sincostantan

...sintancos1
12

12
2

θθψψ

θψθ
ω

ω
ψ

++−+

+−+−=
+

o

obL

t

tIR
c

e

eV  
(7) 

( )
ot

ot

e
e

s 12

12

sintancos
tansincostan1tan ω

ω

θψθ
ψθθψφ −

−

−−
−+−=

 
 (8) 

Equations (7) and (8) have 3 degrees of freedom in the 
RF system phase space θ (or ψ), β and t0. Both RL and the 
half bandwidth of the cavity ω12 are a function of β. In a 
multi cavity RF unit, individual cavity flattops can be set 
calculating individual cavity values θcav and βcav that 
satisfy (7) and (8) with (constrains (4) and (5) for a given 
t0. However, t0, the beam-on time, is unique for the RF 
unit and constrains the generator (reflected) power. 
Hence, to minimize the overall power requirements in an 
N cavity RF unit a system of 2⋅N equations with 2⋅N+1 
unknowns must be solved. 

RF POWER OPTIMIZATION 
The reflected power is given by 

dissbeamgenref PP
dt

dWPP −−−=
,   where  
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Pref: reflected power. 
Pgen: generator power 
Pbeam: power transferred to the beam.  
dW/dt: change of stored energy in the cavity. 
Pdiss: cavity cryogenic losses. 
For superconducting cavities Pdiss is very small compared 

to the other members and can be neglected. If (6) and (7) are 
able to achieve a good flattop then dW/dt is also very 
small. Then we can approximate Pref ≈ Pgen – Pbeam 
and the reflected power is given by the mismatch between 
the RF system characteristic impedance and the cavity-
beam impedance reflected to the waveguide (Fig 2). 

 
Figure 3: Power-impedance block diagram. 

The cavity-beam impedance is given by the parallel 
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Minimizing the reflected power implies Zeq/N2 that 
should be a close match of Zo. Given that Zo is real, the 
imaginary part of Zeq should be minimized and the real 
part of Zeq reflected to the waveguide side should match 
Zo. 

 
Figure 4: a) Cavity, vectorsum and vectorsum setpoint 
amplitude voltages, b) cavity phases, c) RF forward, 
reflected and beam powers. 

OPTIMIZATION AND SIMULATION 
EXAMPLE 

The nonlinear system given by (7), (8) and (9) with 
constrains given by (4) and (5) for each cavity can be 
solved to find an optimum set of parameters βi

opt, ψi
opt (or 

θi
opt), and t0

opt. As an example of the method described 
above we have used the same Project X RF unit described 
in Table 1. The nonlinear system of equations has been 
solved using a numerical solver from Matlab. The 
optimized parameters were fed to the same RF unit 
simulator used to generate Fig. 2. Figure 4 shows that the 
cavity gradients using the transient approach have been 

substantially improved both for amplitude and phase. This 
improvement to the individual cavity gradients is done at 
the cost of increasing the reflected power with respect to 
the steady state approach during the beam-on to about 4% 
of the beam power. 

CONCLUSIONS 
The transient analysis allows optimum cavity gradient 

flattops across the RF unit, in particular when those 
cavities are operated at different synchronous phases (Φs) 
and with different beam loading conditions. The optimum 
RF parameters βopt

i ,ψ opt
i only need to be set once during 

the RF and beam commissioning and are not coupled with 
parameters in other cavities in the RF unit. The beam-on 
time t0

opt can be used to minimize the RF generator power. 
For the sake of comparison Table 3 shows the 
optimization parameters obtained by each method. 

Table 3: Optimization Parameters 
Steady state Transient Cavity 

Number Beta Theta Beta Theta 
182 2942 -20.00º 3473 -35.54º 
183 2692 -20.00º 4184 -34.77º 
184 2797 -20.00º 3881 -35.10º 
185 2574 -20.00º 4540 -34.40º 
186 3021 -20.00º 3257 -35.79º 
187 2731 -19.00º 4109 -33.11º 
188 2940 -19.00º 3515 -33.72º 
189 3022 -19.00º 3292 -33.96º 
190 2770 -19.00º 3993 -33.23º 
191 3262 -19.00º 2663 -34.66º 
192 2728 -18.00º 4151 -31.33º 
193 2981 -18.00º 3439 -32.03º 
194 3119 -18.00º 3071 -32.40º 
195 2858 -18.00º 3781 -31.69º 
196 2982 -18.00º 3436 -32.03º 
197 3395 -17.00º 2398 -31.28º 
198 3278 -17.00º 2691 -30.98º 
199 3140 -17.00º 3049 -30.63º 
200 3348 -17.00º 2516 -31.16º 
201 3055 -17.00º 3272 -30.41º 
202 2977 -16.00º 3515 -28.40º 
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