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cylinders of radius R and of axis-to-axis separation 2A.  
The properties of such a structure can be calculated 
exactly, and will be compared later to simulations. 

Peak Surface Electric Field 
Defining the transverse electric field tE  as 2t tE V l= , 

where tV  is the transverse voltage acquired by an on-
crest, velocity-of-light particle, the peak surface electric 
field pE  is 

 
1/2

21 1 exp 2 1
4 1

p

t

E R
E R

l a p a
p a l

+Ê ˆ È ˘= -Á ˜ Í ˙Ë ¯- Î ˚
, (1) 

where A Ra = .  

Peak Surface Magnetic Field 
Since this model is a uniform transmission line 

operating in a pure TEM mode, the peak magnetic field is 
related to the peak electric field by 

 
910 (in mT)  (in MV/m).p pB E

c
=  (2) 

Energy Content 
The energy content U is related to the transverse 

gradient Et  by 

 2 3 1 20 cosh exp 4 1 ,
32t

RU E
e l a p a
p l

- È ˘= -Í ˙Î ˚
 (3) 

where 0e  is the permittivity of the vacuum in SI units. 

Geometrical Factor 
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where 0 0 0 377Z m e= W  is the impedance of the 
vacuum. 

Transverse Shunt Impedance 
The transverse shunt impedance, defined as 2

t tR V P=  
where P is the power dissipation, is  
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It can be noted that the electromagnetic properties can 

be expressed simply as functions of R l  and A Ra = .  
Universal curves for the peak surface electric field and the 
product of the geometrical factor G and Rt /Q are shown 
in Figs. 4 and 5.  The peak surface electric (and magnetic) 
field has a weak dependence on R l  and A R  but is 
minimum for a rather large R l .  G*Rt/Q, on the other 
hand, has a much stronger dependence on both and is 
maximum for smaller R l .  Thus the final design will   
depend on which parameter to optimize, and in particular 
whether the structure will be normal or superconducting. 

 
Figure 4: Ratio of peak to transverse electric field given 
by Eq. (1).  R is the radius of the cylindrical rods and 2A 
is the distance between their axes. 

Figure 5: Product of the geometrical factor G and the 
transverse shunt impedance Rt/Q given by Eqs. (4)-(5). 

ELECTROMAGNETIC DESIGN 
Since one of the main characteristics of this geometry is 

its small transverse size, it would be particularly attractive 
at low frequency, and preliminary design activities have 
focused on a 400 MHz single-cell cavity.   

The lengths of the bars and of the outer box were, to 
first order, fixed at 375mm and the main design 
parameters were the radii and separation of the two 
parallel bars.  Results of simulations using CST 
Microwave Studio® are shown in Fig. 6.  They compare 
very favorably with the analytical results of the previous 
section.  As was expected the transverse shunt impedance 
of this design is quite high compared to designs based on 
TM110 modes.  This is similar to the high shunt impedance 
of TEM accelerating structures compared to TM010 
structures [11].   

For velocity-of-light applications TEM accelerating 
structures have peak surface fields larger that TM010 
structures [11].  The analytical model and these 
simulations show that this is not the case for deflecting 
cavities as peak surface fields for TEM structures are 
comparable to those in TM110 structures. 
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Figure 6: Ratio of peak to deflecting electric field (upper) 
and G*Rt/Q (lower) for the 400 MHz structure shown in 
Fig. 1 obtained from CST Microwave Studio. 

Properties of a preliminary design of a 400 MHz 
parallel-bar deflecting structure obtained from Omega3P 
are shown in Table 1.  It can be noted that the deflecting 
π-mode is the lowest frequency mode, which would 
simplify the damping of all the other modes in high-
current applications. 

EXTENSIONS AND OPTIMIZATION 
The single-cell parallel bar structure discussed so far 

can be straightforwardly extended to a multicell structure 
by the addition of sets of parallel bars separated by λ/2 as 
shown in Fig. 7.  In the relevant (deflecting) mode of 
operation each set of bars oscillates in opposite phase 
from its neighbors and each bar oscillates in opposite 
phase from the bar across the beam line.  This will 
increase the degree of degeneracy since the number of 
TEM modes is equal to the number of bars, and splitting 
the (π,π)  deflecting mode from all the others will need to 
be provided, for example by shaping the outer walls or 
introducing partial walls between the sets of bars. 

All the above examples use straight circular cylinders 
for the bars.  Further optimization can be obtained by 
deviation from a circular cross-section, deviation from a 
constant cross-section (hyperboloidal shape), deviation 
from a straight bar centerline.  These modifications could 

yield geometries with lower surface magnetic field, for 
example, at the expense of added engineering complexity. 

 
Table 1: Properties of Parallel-bar Structure shown in 
Figure 1 Calculated from Omega3P and Analytical Model 

 
Parameter 

 
Ω3P 

Analytical 
model 

 
Unit 

Frequency of π-mode 400 400 MHz 
λ/2 of π-mode 374.7 374.7 mm 
Frequency of 0-mode 414.4 400 MHz 
Cavity length 374.7 ∞ mm 
Cavity width 500 ∞ mm 
Bars length 381.9 374.7 mm 
Bars diameter (2R) 100 100 mm 
Bars axes separation (2A) 200 200 mm 
Aperture diameter 100 0 mm 
Deflecting voltage Vt * 0.375 0.375 MV 
Ep * 4.09 4.28 MV/m 
Bp * 13.31 14.25 mT 
U  * 0.215 0.209 J 
G 96.0 112 Ω 
Rt/Q 260 268 Ω 
* at Et=1MV/m 

 
Figure 7: Concept for a 2-cell parallel-bar deflecting 
cavity.  Each of the bars oscillates in opposite phase from 
its two nearest neighbors. 
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