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Abstract

We present a Monte Carlo method implemented in the
code elegant [1] for simulating Touschek scattering ef-
fects in a linac beam. The local scattering rate and the dis-
tribution of scattered electrons can be obtained from the
code. In addition, scattered electrons can be tracked to the
end of the beamline and the local beam loss rate and beam
halo information recorded. This information can be used
for beam collimation system design.

INTRODUCTION

The Touschek effect is a single Coulomb scattering ef-
fect between charged particles in a beam. For a relativistic
beam, a small change of transverse momentum results in a
much larger change of longitudinal momentum, as the mo-
mentum change is increased by the Lorentz factor γ. When
the change exceeds the machine’s momentum acceptance,
the scattered particle is lost.

The Touschek effect is well understood in storage rings
and has been largely ignored for linac beams in the past due
to the negligible loss rate. However, this is not the case for
an intense electron bunch with ultra-low emittance and very
short bunch length that passes through a linac with a very
high repetition rate, as occurs in proposed Energy Recovery
Linacs (ERLs) [2]. This is a concern for a possible ERL
upgrade of the APS, since the radiation shielding of the
ring is not designed for high continuous loss rates [3].

Previously, a preliminary theoretical analysis [4] was
performed using Piwinski’s formula [5]. To better deter-
mine the scattered electron distribution and determine pre-
cisely the electron loss rate and loss position, we have in-
cluded a Monte Carlo simulation method in elegant for
studying the Touschek scattering effect.

In this paper, we review the theory of Touschek scatter-
ing, then describe the method used for the Monte Carlo
simulation. The scattering rates calculated from the Monte
Carlo simulation and Piwinski’s formula are compared.
The strategy used for calculating beam loss rate and lo-
cation in elegant is then explained. Finally, we give an
application example to a proposed APS ERL lattice design.

THEORY DESCRIPTION

In the center-of-mass (CM) system 1 , the probability of
one of the two encountered electrons being scattered into
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1For clarity, we use (*) to denote all quantities in the CM system, as

opposed to quantities in the laboratory coordinate system.

a solid angle dΩ∗ is given by the differential Møller cross
section [6]
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where re is the classical electron radius; γ∗ and β∗ are
the relative energy and velocity of scattered electrons in
the CM system, respectively; Θ∗ is the angle between
the momenta before and after scattering; and dΩ∗ =
sin Θ∗dΘ∗dΨ∗.

The total scattering rate R is given by the integration
over all possible scattering angles and over all electrons in
the bunch. In the CM system,
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∫
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where v∗ is the scattered electrons’ velocity, σ∗ is the
total Møller cross section, �x∗ = (x∗, y∗, z∗, p∗x, p∗y, p

∗
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ρ(x∗
i )

∗ is the electron phase-space density, and dV =
dx∗dy∗dz∗dp∗x1dp∗y1dp∗z1dp∗x2dp∗y2dp∗z2. σ∗ is integrated
over the solid angle dΩ∗ with Θ∗ ∈ (0, π

2 ], Ψ∗ ∈ [0, 2π]:
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The reason for Θ∗ ∈ (0, π
2 ] is that, if one electron is

scattered into the region 0 < Θ∗ ≤ π
2 , then the other is

scattered into the region π
2 ≤ Θ∗ < π. The factor “2” in

Equation (2) includes both regions.
For the problem we are interested in, we assume that

px � pz and py � pz , which means that the Lorentz trans-
formation is mainly taking place along the z direction, and
σ∗ is parallel to the z∗-axis. Transforming to the laboratory
coordinate system gives
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γ

σ∗

γ
(4)

and

R = 2
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with
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Ignoring coupling, for an electron bunch with Gaus-
sian distribution, the electron’s density in phase space
(xβ , x′

β , yβ, y′
β , Δz, Δp/p0) is given by
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where N is the total number of electrons in the bunch; βx,y

and αx,y are the local optical functions; σxβ,yβ are the
transverse beam sizes for on-momentum electrons; σz is
the bunch length; and σp is the energy spread. A scattering
event happens when the following conditions are satisfied

Δz1 = Δz2,

xβ1 + Dx
Δp1
p0

= xβ2 + Dx
Δp2
p0

,

yβ1 + Dy
Δp1
p0

= yβ2 + Dy
Δp2
p0

,

(8)

where Dx,y are the dispersion functions.
Equation (5) is a general expression for the Coulomb

scattering rate. The Touschek scattering rate (beam loss
rate) is RT = R(|Δp/p0| > δm), where δm = Δpm/p0

is the machine’s local momentum aperture, i.e., the mo-
mentum aperture relevant to particles scattered at a specific
location.

MONTE CARLO SIMULATION

The method used in elegant for simulating electron
scattering processes is modified from S. Khan’s work for
BESSY II [7, 8]. For each simulated scattering event, a
total of 11 random numbers are generated and used to de-
termine the position of the scattering event (x, y, z); the
momenta of electron 1 (x′

1, y
′
1, Δp1); the momenta of elec-

tron 2 (x′
2, y

′
2, Δp2); and the scattering angles (Θ∗, Ψ∗).

Dispersion corrections are included in the process of as-
signment. The electron’s momenta after scattering are cal-
culated and saved. We compute the integral in Equation (5)
using Monte Carlo integration with N uniform distributed
samples in the n-dimensional volume V , e.g.,

∫
V

f(�x)d�x ≈ V

N

N∑
i=1

f(�xi). (9)

The average scattering rate is thus given by

RM (|δ| > δm) =
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where N is the total number of simulated scattering
events; M is the total number of scattered electrons
with |δ| > δm (one scattering event may generate
one or two electrons with |δ| > δm, and they are
counted individually); and V is the total volume in
(x, y, z, x′

1, y
′
1, dp1, x

′
2, y

′
2, dp2, Θ∗, Ψ∗) space from which

the events are selected. When M is large enough, the sim-
ulated scattering rate converges to the analytical scattering
rate, see Figure 1. In elegant, we use 5 ·106 as the default
value of M .

Figure 2 shows the excellent agreement in the local scat-
tering rates calculated from Piwinski’s formula [5] and our
Monte Carlo simulation. The lattice used here is the turn-
around arc (TAA) cell of the APS-ERL lattice [9].

Figure 1: Simulated scattering rate vs. number of simulated
scattered electrons.

Figure 2: Local Touschek scattering rate: Piwinski formula
(black) and Monte Carlo simulation (red).

BEAM LOSS CALCULATION

To simulate beam loss due to Touschek scattering, we
combined Piwinski’s formula and the Monte Carlo method
in elegant. First, the entire beamline is divided into Ns

short segments by inserting TSCATTER elements as sepa-
rators. For each segment, we use Piwinski’s formula to
calculate the total scattering rate (integrated scattering rate∫

RPiwinski,i) for that segment. The scattered electron dis-
tribution at each TSCATTER element is generated from the
Monte Carlo simulation. Each simulated scattered electron
represents many electrons with a local scattering rate ri.
Let the total rate each represents for that segment be R i,
given by

Ri =
ri∑
ri,

×
∫

RPiwinski. (11)

The beam loss rate and location can then be calculated
through tracking those scattered electrons through the
beamline and recording all lost electrons, with R i provid-
ing a weight for each simulated electron’s contribution to
the total loss rate.

As we pointed out in the previous section, to obtain a
reliable scattering rate and a smooth scattered electron dis-
tribution, M has to be large enough (∼ 5 · 106). We also
require a large number of segments, Ns. That means that
we need to track M × Ns electrons, which requires sig-
nificant CPU time. This motivated a search for an alterna-
tive strategy to reduce the simulation burden. We examined
the scattering rate that each simulated electron represents
and, not surprisingly, found a large variation. Some simu-
lated electrons represent very likely scattering events, while
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some represent very low probability events. We sorted all
simulated electrons by the associated scattering rate. Fig-
ure 3 illustrates the sum of the scattering rate (

∑
ri) vs. the

number of simulated electrons (
∑
i

).

Figure 3: Integrated scattering rate vs. number of simulated
electrons. Electrons are sorted with increasing associated
scattering rate.

From this plot we can see that about 5% of simulated elec-
trons represent about 99% of the scattering rate, which
means that we may track a small portion of simulated elec-
trons and get a fairly good beam loss information. Fig-
ure 4 compares the computed loss rate for tracking scat-
tered electrons with 95%, 99%, and 100% of the total scat-
tering rate, respectively. It’s clear that the differences are
small and that this strategy can greatly speed up simulation
with little sacrifice of accuracy. In elegantwe use 99% as
a default value.

Figure 4: Simulated loss rate vs. position for various values
of the scattering rate cut-off.

APPLICATION TO APS-ERL DESIGN

APS has an eye on a future ERL upgrade, but we are
concerned about beam loss issues since the APS tunnel is
already built. The allowed beam loss in the APS ring is
about 170 pA / 1100 m [10], i.e., 0.15 pA/m. We applied
the Monte Carlo simulation to the APS-ERL lattice [9]. We
assumed geometric rms emittances of 22 pm, 0.01% rms
energy spread, 0.6 mm rms bunch length, 77 pC/bunch,
and a 1.3 GHz repetition rate (giving 100 mA average cur-
rent). Figure 5 shows the beam loss rate from Touschek
scattering without sextupole correction in the TAA section.
This is well above what is tolerable. A sextupole correc-
tion along the TAA section was then added to the lattice

by maximizing the minimum value of the local momentum
aperture. Figure 5 shows that this significantly reduces the
beam loss rate, so that the average loss rate (0.018 pA/m)
is well below the desired value.

(a) (b)

Figure 5: Simulated loss rate vs. position for APS-ERL
without sextupole correction in TAA (a) and with opti-
mized sextupole correction (b).

CONCLUSION

A Monte Carlo simulation of Touschek scattering for
a single-pass system (linac or transport line) was imple-
mented in elegant. We compared the simulated local scat-
tering rate with the rate from Piwinski’s formula and found
good agreement that confirms our simulation is correct. We
also developed a strategy to speed up the simulation by
tracking only those simulated scattered particles that rep-
resent the bulk of the scattering events. The application to
a proposed APS-ERL lattice shows that the Touschek scat-
tering effect is serious in an intense high-brightness elec-
tron beam. An optimized sextupole correction must be em-
ployed to lower the beam loss to a safe value. This sim-
ulation can also provide information for beam collimator
design and verify the collimator system’s efficacy.
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