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Abstract
We estimate the energy fluence (energy per unit area) at

the focal plane of a beam undergoing neutralized drift

compression and neutralized solenoidal final focus, as is

being carried out in the Neutralized Drift Compression

Experiment (NDCX) at LBNL. In these experiments, in

order to reach high beam intensity, the beam is

compressed longitudinally by ramping the beam velocity

(i.e. introducing a velocity tilt) over the course of the

pulse, and the beam is transversely focused in a high field

solenoid just before the target. To remove the effects of

space charge, the beam drifts in a plasma. The tilt

introduces chromatic aberrations, with different slices of

the original beam having different radii at the focal plane.

The fluence can be calculated by summing the

contribution from the various slices. We develop analytic

formulae for the energy fluence for beams that have

current profiles that are initially constant in time.  We

compare with envelope and particle-in-cell calculations.

The expressions derived are useful for predicting how the

fluence scales with accelerator and beam parameters..

INTRODUCTION

Recently, experiments have been carried out on the

Neutralized Drift Compression Experiment (NDCX) at

Lawrence Berkeley National Laboratory to investigate the

use of injected plasma into a final drift compression line,

final focus magnet, and target chamber to eliminate the

effects of space charge [1], which, in turn, allows for

maximum longitudinal compression and transverse final

focusing.  These beams have short final pulse duration tf
and small focal spot radius rspot (defined at 2

1/2
 times the

rms radius, when averaged over all beam particles).

Because of the possibility of creating high beam

intensities in a short pulse, the beams are being used to

generate so called warm dense matter (WDM) conditions

[2,3].  The main figures of merit for experiments are the

beam fluence (beam energy per unit area integrated over

the pulse) E and tf, since the attainable temperature is

determined by E as long as tf is much shorter than the

hydrodynamic timescale for expansion. In this paper, we

provide an analytic estimation of E which can be useful

for designing experiments that maximize E.

In the following sections, we first describe a simplified

model for a final drift and focus section. We then outline

the derivation of the estimate and.compare with more

detailed numerical calculations (envelope and particle in

cell), and finally we describe how we have used these

three approaches to help design experiments for NDCX at

LBNL.

MODEL FOR ANALYTIC ESTIMATE

We assume that after the beam is accelerated to final

velocity v0, and energy qV0 with charge state q,  the beam

exits the accelerator with 4 rms unnormalized transverse

emittance . The beam passes through an induction

bunching module gap that increases the velocity of the tail

to vt and decreases the velocity of the head to vh. The "tilt"

is defined as   (vt-vh)/v0. The beam drifts a distance L to

the target, longitudinally compressing as it propagates,

due to the tilt.  A distance f from the target, when the

beam has radius r0 the beam enters a solenoid of strength

Bsol and length lmag, and exits the solenoid with the

envelope converging angle r1' and radius r1, setting the

beam onto a final trajectory that focuses onto the target

with radius rspot. . (Throughout this paper, envelope radii

r, with or without subscripts, are defined as 2
1/2

 times the

rms radius). A plasma is assumed to fill the drift section,

the final solenoid and the target chamber (that includes

the distance between the target and the solenoid).  We

further assume that the plasma density sufficiently

exceeds the beam density so that the space charge forces

within the beam are negligible. This implies that each

slice of the beam retains the velocity v  v0(1+ ) it

obtained in the bunching gap,  and so each slice will have

a slightly different focal length, and hence slightly larger

focal spot at the target than the focal spot of the

longitudinal center of the beam ( =0). Although formal

analytic solutions to the kinetic equations describing drift

compression have been obtained [4], exact closed form-

scaling relations for the fluence have not, as of yet, been

derived.

ANALYTIC ESTIMATE OF FLUENCE E
The envelope equation for the beam radius r for a beam

without space charge may be written:   r =
kc
2

4
r +

2

r 3
.

Here kc = qBsol/(mv), and prime is derivative with respect

to longitudinal position z . Within the solenoid, the

emitttance term is small relarive to the focusing term,  so

we may solve  the  envelope  equat ion:

r1 = r0 cos
kcz

2
+

2r0
kc

sin
kcz

2
 .   We assume that  r0' =0, as

the change in r' going through the solenoid is expected to

be large.  The condition that the beam comes to a focus at

a distance after the magnet f-lmag is:                                     

 r 1 = r0 / f lmag( )( )coskclmag /2 = (kcr0 /2)sinkclmag /2  . This

may be expressed as: 
mag = tan / 1+ tan( ).        Here

mag = lmag/f, and  =kclmag/2.  The contribution to the spot
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size from the emittance is thus:  rspot
2

emittance
=

2

 r 1
 2 =

2 f 2

r0
2 F1( )

.

Here F1( ) =1/(cos + sin )
2
. For "off-momentum" slices

the beam spot will be larger by the amount drspot =  r 1df
where the focal length is given by: f = r1 /  r 1  so the change

in focal length for off-momentum particles is:

df = dr1 /  r 1 r1d  r 1 /  r 1
2 . The contribution to the spot size

f rom chromat ic  abe r ra t ions  i s   t hus

drspot chromatic = ( /sin )r0 . So the spot radius from both

emittance and chromatic aberrations can be written:

rspot
2 ( ) = rspot

2

emittance
+ drspot

2

chromatic
= 2 f 2F1( ) /r0

2 + r0
2 2F2( )

Here F2( )=(  /sin )
2
. For the "thin lens" approximation

 <<1, F1( ) 1 and F2( ) 1 , and the "thick lens"

approximation  = /2, F1( )=4/
2
 and F 2( )= 2/ 4 . A

more direct derivation of rspot( ) may be obtained by

expanding the envelope equation in  and integrating.

To calculate the central fluence E(r=0), we must

integrate the intensity from each slice.  Since the phase

space at the focus is rotated by ~ /2 relative to the

beginning of the soleonid, we expect (and assume) the

spatial distribution for each slice to be close to a gaussian

distribution in radius with an rms radius equal to rspot/2
1/2

(for each ). This amounts to adding many different

gaussians with different widths, yielding a non-gaussian

distribution. The number of particles per unit area n(r) at

radius r at the focus integrated over the pulse is thus:

n(r ) =
dn(r )

ds
ds =

dn(r )

ds

ds

d
d

/ 2

/ 2

=
lb

lb / 2

lb / 2 dn(r )

ds
d

/ 2

/ 2

Here lb is the length of the bunch before compression, and

ds is an element of beam along the beam length

corresponding to an element of velocity tilt d . Note that

we are assuming that the velocity tilt imposed on the

beam in the induction gap is linear, so that / = s/lb. By

assumption:
dn(r )

ds
=
N0 / lb

2
exp[ r 2 / 2 ]

Here  = rspot/2
1/2

, and N0 is the total number of particles

in the bunch, so that N0 = 2 dr r dn(r) /ds
0

.  The bunch

here is assumed to be constant current before bunch

compression. The integral for n(r) may be expressed:

n(r) =
4N0

f F1( )F2( )

exp[ r2 /(u2 min
2 )]

u u2 11

max / min

du  where

min =
1

2

f F1( )

r0

 and 
max =

1

2

2 f 2F1( )

r0
2 +

r0
2 2F2( )

4
.

For r =0, the integral may be carried out:

n(r = 0) =
4N0

f F1( )F2( )
tan 1 r0

2 F2( )

2 f F1( )

 

 
  

 

 
  

.                         (1)

In the limit, that  approaches zero, the central

integrated density is just that of an uncompressed

emittance limited beam n(r=0, =0)=2N0r0
2
/[ f 

2 2
F1( )].

The fluence E is given by E  qV0 n(r=0).  In figure 1, we

have plotted the fluence normalized to the fluence at =0,

as a function of the argument of the inverse tangent to

show potential gains if the chromatic aberrations were

corrected (as in a time dependent correction concept now

under study for NDCX). For the NDCX experiments

listed in Table 1 (cases b and c), the argument has a range

of 4 to 16, with corresponding values of

n(r=0)/n(r=0, =0) ranging 0.31 to 0.092, respectively,

indicating potential fluence increases of  3 to 11,

respectively if chromatic aberrations are corrected. 

        

Figure 1. Fluence normalized to =0 fluence as function

of quantity r0
2

 F2( )
1/2

/[2 fF1( )
1/2

].

We may also estimate the spot radius of the integrated

pulse. Integrating over all slices,  the radius of the

integrated pulse is given by:

rspot
2 =

2 f 2

r0
2 F1( )+ r0

2 2 2F2( )                                   (2)

Here I(s)( (s) / )2ds
lb / 2

lb / 2( )
1/ 2

/ I(s)ds
lb / 2

lb / 2( )
1/ 2

, where

I(s) is the current as a function of longitudinal position s

along the beam before drift compression, with s=0

corresponding to the center of the beam. For

I(s)=constant, then  = 1/12
1/2

0.29. (For a parabolic

pulse  = 1/20
1/2

0.22). The quantity rspot is minimized

when r0 is such that the two terms in the equation for rspot
2

are equal, namely: r0_opt
2
= f [ F1( )F2( )]

1/2
/( ) for

which rspot_opt
2
=2 f [F1( )F2( )]

1/2
. Note that, although

there is an optimum r0_opt that minimizes the rms radius of

the integrated spot rspot_opt[5], increasing r0 increases E

monotonically, only saturating as the inverse tangent in

eq. 2 approaches /2. However, the area over which E is

large decreases as r0 increases beyond r0_opt.

There are a number of assumptions that are built into

equation (1). One assumption is that r0 is constant for all

.  When we rederive equation 1 replacing r0 with r0 +

L , where  is a constant (as can be expected from

aberations from the induction bunching module), we find

that the integral for n(r=0) is unchanged, to lowest order

in the parameter L /r0 as long as L /r0 <<1, with finite

correction only in second order.  Another assumption in

the model, is that r0' is small, which usually is true relative

to r1', but its impact on rspot has not yet been quantified

analytically.

COMPARISONS WITH NUMERICAL

RESULTS

We have compared our analytic model with predictions

of an envelope model and a particle in cell code LSP. The

envelope model makes the same assumption as the
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Figure 2. Calcuation of E using an envelope/slice model. Each color represents the trajectory of a different slice with

different d. See text for further details.

Table 1. Comparison of E calculated using envelope model, LSP, and Eq. (1)
Bsol

(T)
Initial
pulse
t(ns)

qV0

(keV)
r

z=284
(mm)

r'
z=284
(mm)

I

at
focus
(A)

t_f
(ns)

L
(cm)

 f

(cm)

  r_0

(mm)

E

en-
velope

(J/cm2)

E

LSP
(J/cm2)

E

Eq. (1)
(J/cm2)

a 0 200 300 21.5 -23.80 3.08 1.69 144 0.17 0.06
b 8 282 300 9.55 -9.82 4.01 1.83 144 0.24 23 19.2 0.39 0.30 0.59

c 8 400 300 14.40 -13.70 3.23 3.22 288 0.17 23 11.8 0.82 0.69 0.94

analytic model at the focal spot. Namely, take the spot

radius for each slice as calculated by a numerical

integration  of the envelope equations, and assume a

gaussian intensity profile for the slice at the target plane,

summing the intensities over slices numerically. The

advantage of the envelope model is that the finite r'

induced by the induction bunching module can be used as

an initial condition at the beginning of the drift; the finite

region where the beam is non-neutral can be accounted

for; and so there are no assumptions about r0 and r0'.

The most detailed and accurate description of the drift

compression and final focus is obtained using the LSP

code [6,7].  LSP is a particle in cell code that includes

fringe fields of the magnets and bunching module and

models for calculating the plasma density and flow. The

calculation includes first principle simulations of the

beam through accelerator, drift, final focus, and chamber.

In figure 2, we plot an example of an envelope

calculation using parameters from the NDCX experiment.

The beam is 300 kV, 27 mA, singly charged potassium.

The envelope calculation is initialized at z = 284 cm, at

the exit of the induction bunching module gap.  The

envelope slices are calculated assuming full space charge

contribution, until the  entrance to the neutralized section

at z=310 cm.  The beam propagates assuming full

neutralization through the final focusing solenoid (549 < z

< 559 cm) to the focal  plane (z= 572 cm).

Table 1 compares the final fluence E for the numerical

calculation of the envelope; LSP; and analytic model (eq.

1). The first row (a) corresponds to experiments without a

final  focusing solenoid.  The second and third rows

correspond to beamlines using a new NDCX induction

bunching module, the final focusing solenoid (Bsol = 8

Tesla) and two beamline configurations: (b) with the

present drift compression length (L=144 cm), and (c) with

twice the drift  compression length (L=288 cm) as the

present setup. The two cases (b) and (c) show the effect of

using a bunching module with a shorter bunch length (and

relatively large tilt) with short drift length (since L lb/ )

versus using a larger bunch length and smaller tilt (and

large drift length). This approximately keeps the "Volt-

seconds" (roughly proportional to  lb) of the bunching

module constant, which is constrained by the finite size of

the induction core. As can be seen from the table the

simulation yields somewhat smaller values of E, than the

envelope results or analytic results, possibly due to

imperfect neutralization, or effects of fringe fields, but the

analytic calculation demonstrates the trends and scalings

that can be useful for quick design estimates.

CONCLUSION

We have estimated the energy fluence in a beam
undergoing neutralized drift compression and neutralized
solenoidal final focus, (eq. 1) and have compared it to
envelope and particle in cell simulations. We find that the
estimate is useful for understanding the general scaling of
fluence on beam and accelerator parameters and for
estimating system performance when alternative
experiments are being considered.
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