
OPEN XAL BUILD SYSTEM*

T. Pelaia II#, ORNL, Oak Ridge, TN 37831, USA

Abstract
Open XAL is an accelerator physics software platform

developed in collaboration among several facilities
around the world. The build system is implemented
through Apache Ant build files and features zero
configuration simplicity based on directory patterns.
These directory patterns allow for correctly building the
Open XAL environment including the core and site
specific applications, services, extensions, plugins and
resources. Options are available for deployment and
custom application packaging. This paper describes the
Open XAL build rules, options and workflows.

INTRODUCTION
The Open XAL [,] build system was designed from 1 2

scratch to build multiple components with zero
configuration while allowing for optional customization.
Apache Ant was chosen as the build tool. Components
include the core, extensions, plugins, services,
applications and scripts. The final products are a single
shared library plus the applications and services that
depend on that shared library. Scripts don’t require any
build processing except to be copied for deployment. The
goal of the build system is to provide zero configuration
builds driven by convention.

BUILD REQUIREMENTS
Apache Ant [] was chosen as the build tool since it is 3

mature, commonly available, well supported and
currently the standard build tool for Java. The version of
Ant must be at version 1.9 or later to support all of the
build commands and settings used in this project. Java
J2SE 7 or later is required for compiling the current
source code. The Open XAL project contains all the
source code and libraries required to build the project.

ZERO CONFIGURATION
The Open XAL project delivers on the goal of building

the entire project using a single command with zero
configuration. Simply typing the command, “ant” in a
terminal at the root of the project will build all
executables. A second command, “ant install” can

optionally be used for installing the executables in a
deployment directory whose path can optionally be
configured. Typing the command, “ant help” will display
the list of all available build commands. Build files also
exist throughout the project to allow builds at different
levels of the tree. For example, one can build just a single
application.

It is notable that zero configuration is true even when
adding new components to the project. This is possible
because the Open XAL build system is founded upon two
principles: component separation and convention over
configuration.

Component Separation
Component separation means that allowable

dependencies between components are restricted. This
separation facilitates efficient compilation and
deployment and provides well defined dependency rules.
Components are categorized as the core, plugins,
extensions, services, applications and scripts.

The core consists of common foundation packages and
has no compile time dependencies on any other
components. Plugins provide runtime support for the core.
For example, a plugin could provide a branded database
driver that is required at runtime for the core’s generic
database tools. Extensions provide additional support
packages to be shared among applications, scripts and
services. Plugins and extensions can depend upon each
other and on the core. Applications, scripts and services
[] are the end use executables and they may depend upon 4
the core, extensions and plugins. Applications and
services may also explicitly provide extensions. For
example, a service provides an extension containing the
public remote interface that clients will use to
communicate with the service.

While not enforced, it is encouraged that any external
library be wrapped so as to abstract functionality from the
details of the external library. This allows for flexibility in
replacing external libraries. Furthermore, it makes it
easier to identify missing components since component
packages follow an Open XAL naming convention
whereas external library package names are not under our
control.

Convention over Configuration
The build system uses convention over configuration to

determine how to assemble and build components. The
directory layout and naming convention determine how
components are identified and how to package each
component.

At the top level, component directories are
appropriately named apps (for applications), core,
extensions, plugins, scripts and services. A component
bundle placed under any of these directories will be
interpreted accordingly. Except as noted, a component

* This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC0500OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for the United States
Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

pelaiata@ornl.gov

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI048

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

MOPWI048
1265

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

bundle may include any of the following subdirectories:
src, resources, lib, test and extension. The src directory
(not applicable to scripts) is the root of the component’s
Java code following the Java convention for mapping
package names to directory paths. All resources, are
rooted in the resources directory (if any). If any external
libraries are to be included, they must be placed in the lib
directory. The extension directory holds extensions if any
(applies only to applications and services). Currently, only
the core may also include a test subdirectory which
defines unit tests. Unit tests are strictly for testing in
development and are not bundled with the final products.

BUILD PHASES
Applications, services and scripts are final executables.

They depend upon a single common shared library which
is built from the core, plugins and extensions. The build
proceeds as follows. First, the core’s code is compiled and
bundled with its resources and external libraries. Next,
plugins and extensions are compiled together against the
core and bundled with their resources and external
libraries if any. The resulting intermediate build products
from the plugins, extensions and core are merged into a
single shared library. Finally, services and applications are
compiled and bundled with their resources and external
libraries if any. By default, services, applications and
scripts all reference the common shared library. An option
exists to build applications and services standalone which
will merge the shared library into the final build products.
In this case the final executables will be larger, but each
can be distributed as a single jar file.

SITE CUSTOMIZATION
Resources associated with components can include

such things as images, user interface files, online help,
input data and more. Often, these resources are at least in
part site specific which can pose a challenge for sharing

code in a collaboration. To minimize the need to merge
code across sites to customize resources, a top level site
directory is supported. This site directory contains a tree
mirroring the top level directory and may contain apps,
core, extensions, plugins, scripts and services
subdirectories. Component resources may be placed under
each of these subdirectories according to the usual
convention. When the resource manager loads resources,
it gives preference to site specific resources of the same
name if they exist.

Besides resources, the site directory can also include a
build configuration file under the config subdirectory
whose build properties override the defaults. For example,
one can specify a different deployment directory.

FUTURE PLANS
The current build system works very well and supports

the requirements of the Open XAL collaboration. The
most notable issue to address is the lack of support for
unit tests outside of the core. Unit tests will need to be
supported for all components. Localization of resources is
another feature that would be nice to support. Integration
with a dependency manager may also be considered if a
compelling case can made for added value without
violating the goal of zero configuration.

REFERENCES
[1] Open XAL website: http://xaldev.sourceforge.net
[2] T. Pelaia II, “Open XAL Status Report 2015”,

MOPWI050, these proceedings, IPAC’15, Richmond,
VA (2015).

[3] Apache Ant website: https://ant.apache.org
[4] T. Pelaia II, “Open XAL Services Architecture”,

MOPWI049, these proceedings, IPAC’15, Richmond,
VA (2015).

6th International Particle Accelerator Conference IPAC2015, Richmond, VA, USA JACoW Publishing
ISBN: 978-3-95450-168-7 doi:10.18429/JACoW-IPAC2015-MOPWI048

MOPWI048
1266

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

15
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

6: Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 - Online modeling and software tools

