Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPHA024 | A Novel Transverse Deflecting Cavity for Slice Diagnostics at BERLinPro | cavity, polarization, SRF, emittance | 827 |
|
|||
Funding: Work supported by BMBF under contract no. 05K10PEA BERLinPro is an energy-recovery linac project to be realized at the Helmholtz-Zentrum Berlin (HZB) for an electron beam with 1mm mrad normalized emittance and 100 mA average current. The initial beam parameters are determined by the performance of the electron source, an SRF photo-electron injector. The development auf this SRF photon-electron injector is a main task of BERLinPro. Especially the beam emittance is basically defined by the SRF photogun. For beam diagnostics time dependent effects from the RF curvature and space charge must be taken into account and a sophisticated slice diagnostics is required. To perform this type of diagnostics a transverse deflecting cavity has been designed, characterized and is presently under construction.. This single cell cavity operates in a TM110-like mode at 1.3 GHz optimized for high transverse shuntimpedance of appr. 3.2 MOhm by a concentration of fields near the beam axis. The cavity has a novel geometry that allows for an operation with both polarizations of the TM110-Mode. The layout of the deflecting cavity will be presented together with the results of the low RF characterization. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN056 | High Power Testing of the First Re-buncher Cavity for LIPAC | cavity, vacuum, electron, radiation | 3051 |
|
|||
Funding: This work is partially supported by the Spanish Ministry of Economy and Competitiveness under projects AIC-A-2011-0654 and the Agreement as published in BOE, 16/01/2013, page 1988 Two re-buncher cavities will be installed at the Medium Energy Beam Transport (MEBT) of the LIPAc accelerator, presently being built at Rokkasho (Japan). They are IH-type cavities with 5 gaps and will provide an effective voltage of 350 kV at 175 MHz for deuterons at 5 MeV. The first prototype has been designed at CIEMAT and built by the Spanish industry. The high power tests and RF conditioning have been successfully performed at the ALBA/CELLS RF laboratory. A solid state power amplifier, which has been developed by CIEMAT and its partner companies at Spain for the LIPAc RF System, has been used for the tests. The cavity has shown a performance according to calculations, regarding the dissipated power, peak temperatures and coupling factor. RF conditioning was started with a duty cycle of 3%, which was increased gradually till continuous wave (CW), which is the nominal working mode in LIPAc. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||