

Ultra-Ultra-Fast Data Acquisition System for Coherent Synchrotron Radiation Based on Superconducting Terahertz Detectors

4th International Particle Accelerator Conference, 12-17 May 2013. Shanghai

M. Caselle, M. Balzer, S. Cilingaryan, M. Hofherr, V. Judin, A. Kopmann, K. Il'in, A. Menshikov, A.-S. Müller, N. J. Smale, P. Thoma, S. Wuensch, M. Siegel, M. Weber

KIT, Institut für Prozessdatenverarbeitung und Elektronik M. Caselle

A.-S. Müller, et al. Observation of Coherent THz Radiation from the ANKA and MLS Storage Rings with a Hot Electron Bolometer. (TU5RFP027), 2009. 23rd Particle Accelerator Conference PAC09 Vancouver, Canada.

log (frequency)

Ultra-fast YBCO THz detectors for picosecond synchrotron pulses

Nanometer-sized YBCO detectors in a high-speed readout system operated > 77 K

P. Thoma et al., *Applied Physics Letters*, 101, 142601, 2012 P. Probst et al., *Physical Review B*, 85, 174511, 2012

CSR - THz experimental setup

Fast pulse sampling board (basic concept)

Fast pulse sampling board (basic concept)

Power splitter DC - 50 GHz, PCB layout

9 4th International Particle Accelerator Conference, 12-17 May 2013. Shanghai. M. Caselle

KIT, Institut für Prozessdatenverarbeitung und Elektronik

Fast sampling prototype board

Acquires one sample in the peaking time region of each THz pulse (resp. CSR bunch emission).

- ✓ PCB → Roger 4003 substrate and high-speed CPW transmission lines (BW: 50GHz)
- ✓ Separation between Analog and digital GNDs
- ✓ Ad-hoc RF-filters on critical components
- \checkmark Vias fences and guard-ring layout techniques
- ✓ Low RMS time jitter → components selected

ADC characterization @ 500MHz square analog input

Sampling prototype board ANKA Test Beam

ANKA CSR (with NbN HEB detector)

- ✓ Tested with YBCO and NbN THz detectors
- Simultaneous turn by turn monitoring of all 184 buckets
- ✓ Continuous data stream (all bunches all turns) without dead time
- Measurements of CSR oscillation amplitude

A.-S. Müller, et al. MOPEA019, these proceedings

Four sampling channels board

4 sampling channels board has been produced \rightarrow recently electrically tested

PCB made by ROGER 4003 consisting in 10 layers metal Stack-up

- ✓ Fast sampling prototype board → dynamical range of ± 800mV with RMS = 2 mV
- \checkmark Very low Deterministic jitter \rightarrow sampling time accuracy of 3 ps
- \checkmark The Random jitter estimated to be < 500 fs
- ✓ High data throughput readout board based on PCIe-DMA (16Gb/s)→ already available and used for beam studies
- ✓ Four sampling channels board \rightarrow developed and produced
- > First test beam test \rightarrow foreseen in the summer
- ➢ High data throughput readout board based on PCIe-DMA (32Gb/s)→ under developing

Thank you for your attention

High-band CPW transmission line

Loss= 38dB/m Z0 = 50.7Ω

Differential CPW transmission line

Differential Stripline (TL)

Digital signal, ADC clock distribution f=500MHz

Time and voltage jitters in high speed sampling board

Jitter: *The deviation from the ideal timing of an event.*

Jitter is composed of: both deterministic and Gaussian (random) content.

Deterministic jitter (DJ)

D.

cross talk, EMI radiation, Noisy reference plane, Simultaneous Switching Outputs (SSO), etc.

Jitter with non-Gaussian probability density function

Random (Gaussian) Jitter (RJ)

High-throughput readout system & FPGA architecture

KIT, Institut für Prozessdatenverarbeitung und Elektronik

PCIe-Bus Master DMA readout architecture

KIT, Institut für Prozessdatenverarbeitung und Elektronik

Conclusion & What's next

4 channels Fast Pulse shape Sampling board \rightarrow is completed

- > First board available \rightarrow mid of February
- > Test beam planned \rightarrow summer 2013
- > The commissioning for the experimental station \rightarrow 2013.

KIT, Institut für Prozessdatenverarbeitung und Elektronik

Picosecond time jitter estimation between bunches

Procedure:

Fast reconstruction of the analog pulse by the 4 samples (FPGA or GPU)

 \rightarrow Measuring of the peak pulse amplitude

→ Measuring of the time jitter between bunches by the position of the samples in the reconstructed pulse