

JEMMRLA – Electron Model of Muon RLA with Multi-pass Arcs

Alex Bogacz

G.A. Krafft, V.S. Morozov, Y.R. Roblin

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Future Muon Facilities – Muon Acceleration

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Alex Bogacz

Thomas Jefferson National Accelerator Facility

4

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

4

Program

Thomas Jefferson National Accelerator Facility

4

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Thomas Jefferson National Accelerator Facility

4

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Conventional Single-pass Droplet Arcs

Conventional Single-pass Droplet Arcs

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Droplet Arc Architecture (6/12 MeV/c)

Operated by JSA for the U.S. Department of Energy

IPAC' 13, Shanghai, China, May 15, 2013

e of Nuclear Ph

Droplet Arc Architecture (6/12 MeV/c)

Droplet Arc Architecture (6/12 MeV/c)

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Super-period Optics for $P_2 / P_1 = 2$

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Displaced Coil EMMA Quads

WEPC156

Proceedings of EPAC08, Genoa, Italy

DEVELOPMENT AND ADJUSTMENT OF THE EMMA QUADRUPOLES

N.Marks, B.J.A.Shepherd, ASTeC / Cockcroft Institute, STFC Daresbury Laboratory, Warrington, UK B. Leigh, F. Goldie, M.J.Crawley, Tesla Engineering, Storrington, Sussex, UK

Parameter	F magnet	D magnet	Units
Integrated gradient	-0.387	0.347	Т
Inscribed radius	37	53	mm
Current	213.4	263.5	А
Turns in coil	11	11	
Yoke thickness	55	65	mm
Pole width	73	100	mm
Horizontal	-2.711	-5.28	mm
movement range	+2.604	+14.535	
Offset from	7.507	34.025	mm
magnetic centre			
Required good field	-32+16	-5610	mm
region			

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Alex Bogacz

Displaced Coil EMMA Quads

WEPC156

Proceedings of EPAC08, Genoa, Italy

DEVELOPMENT AND ADJUSTMENT OF THE EMMA QUADRUPOLES

N.Marks, B.J.A.Shepherd, ASTeC / Cockcroft Institute, STFC Daresbury Laboratory, Warrington, UK B. Leigh, F. Goldie, M.J.Crawley, Tesla Engineering, Storrington, Sussex, UK

Parameter	F magnet	D magnet	Units
Integrated gradient	-0.387	0.347	Т
Inscribed radius	37	53	mm
Current	213.4	263.5	Α
Turns in coil	11	11	
Yoke thickness	55	65	mm
Pole width	73	100	mm
Horizontal	-2.711	-5.28	mm
movement range	+2.604	+14.535	
Offset from	7.507	34.025	mm
magnetic centre			
Required good field	-32+16	-5610	mm
region			

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Alex Bogacz

IPAC' 13, Shanghai, China, May 15, 2013

Three-coil Panofsky Quad

PAC 20007 Proceedings

COMBINED PANOFSKY QUADRUPOLE & CORRECTOR DIPOLE *

George H. Biallas[#], Nathan Belcher, David Douglas, Tommy Hiatt, Kevin Jordan, Jefferson Lab,

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

Preliminary Magnet Modeling

Error Sensitivity – Monte-Carlo Study

Operated by JSA for the U.S. Department of Energy

Conclusions

JEMMRLA (JLab Electron Model of Muon RLA)

- Proof-of-concept for novel RLA with multi-pass arc
 - Efficient use of RF (4.5 passes)
 - No switchyard single droplet arc on each side of the linac

V.S. Morozov, S.A Bogacz et al, 'Linear Fixed-field Multipass Arcs for Recirculating Linear Accelerators', PRST-AB **15**, 060101 (2012)

- Demonstration of a new kind of fixed field accelerator
 - Rapid acceleration of muons for the Next Generation Muon Facilities: Neutrino Factory, Higgs Factory and energy frontier Muon Collider
- Proof-of-principle for multi-pass arcs based on combined function magnets
 - Possible medical application for gantry design

D. Trbojevic, V.S. Morozov et al, 'Non-scaling fixed field alternating gradient permanent magnet cancer therapy accelerator', IPAC'11, San Sebastian, Spain, September (2011)

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz