Development of the Dielectric Wall Accelerator

A. Zografos, C. Hettler, Y. Parker, M. Moyers, D. Pearson,
 V. Joshkin, K. Leung, F. Huang, C. Cohen-Jonathan,
 M. Rougieri, T. Brown, R. Hamm

16 May 2013

IPAC-13, Shanghai, PRC

Presentation Content

Dielectric Wall Accelerator (DWA) introduction
"Dipole" pulsing concept
Single dipole model and results
A dipole DWA system model and results
Radiation leakage calculations
Conclusions

- > The transmission line is connected to the capacitor through the switches.
- > The capacitor is charged prior to switch closure.
- The switches closes at the same time, with the polarities of the voltages across the switches being opposite; hence, the named "dipole" concept.

Single dipole geometry

Experimental Measurements

In order to validate the model of the system, three different experimental measurements were made:

- 1. Measurement of output voltage of the 24 dipoles with a fast probe at low system charge voltages.
- 2. Fringe field measurement in the High Gradient Insulator (HGI) with a capacitive probe.
- Proton energy measurement with Time Of Flight (TOF) at high system charge voltages.

Results: Voltage Probe

Switch on state resistance [Ohm]

Peak values of total output voltage measured at a low system charge voltage.

CP4C

Results: Capacitive Probe

Capacitive probe raw signal.

Simulated fringe field temporal profile and integrated capacitive probe signal.

Proton Energy Gain Measurements

Proton energy change at the exit of HGI for a ~10 kV charge voltage. Peak proton energy change for 5-13 kV capacitor charge voltage.

Radiation Leakage Calculations

- The Monte Carlo program MCNPX was used to simulate the radiation leakage from a 225 MeV proton DWA.
- An accelerating gradient of 50 MeV/m was assumed for these calculations.
- > Radiation Limit Constraints: (2 cases considered).

	Tuning, acceptance testing, and commissioning modes	Treatment Mode
Workload [p/h]	$1.44 \ge 10^{13}$	$1.92 \ge 10^{12}$
Occupancy	radiation workers	public
Allowed DE [Sv/h]	2.5 x 10 ⁻⁵	5.0 x 10 ⁻⁷
ALARA factor	0.1	0.1
Occupancy factor	1.0	1.0
Goal DE [Sv/h]	2.6 x 10 ⁻⁶	5.0 x 10 ⁻⁸

Radiation Leakage Calculation Results

Perspective view of mesh tally planes. Total Dose Equivalent (DE) from simulations is superimposed onto the mesh planes.

Radiation Leakage Calculation Results

Total DE in two orthogonal tally planes showing the calculated total isodose curves.

Conclusions

- CPAC has developed the capability to accurately model various Dielectric Wall Accelerator configurations.
- The DWA engineering prototype system has been used as a tool to validate these simulation results.
- The dipole configuration presented will produce a DWA accelerating gradient of ~20 MeV/m at 25 kV charge voltage.
- Monte Carlo shielding calculations show that a DWA based proton therapy system will have relatively simple shielding requirements, making it a good candidate for installation in existing radiation oncology facilities.
- Work continues on the development and testing of the DWA structure at CPAC.

