Laser Wire Based Parallel Profile Scan of H⁻ Beam at SNS

Y. Liu, C. Long, C. Huang, R. Dickson, A. Aleksandrov, C. Peters, D. Brown

Research Accelerator Division Spallation Neutron Source Oak Ridge National Laboratory

OUTLINE

- Motivation
- Principle of laser wire measurement
- System modifications for simultaneous profile scan
- 9-station simultaneous profile measurement results
- Commissioning experience on laser based diagnostics
- Conclusion

Motivation

- Advantages of laser wire profile/emittance monitor:
 - Measurement is non-intrusive and can be conducted on neutron production beam.
 - No moving parts in vacuum and therefore no risk to superconducting cavity.
 - Novel capability: measurement of profile/emittance of individual minipulses.
- Previously laser wire profile measurements have only been performed serially since a single light source is used.
- On the other hand, physics study such as the SCL modeling at SNS requires the measurement of H- beam profiles at different locations along the acceleration path and on different accelerator settings.
- A simultaneous profile measurement would be especially helpful to improve the efficiency and accuracy of the physics studies.

Principle of Laser Wire Measurement

SCL Laser Wire Profile Measurement System

Liu et al, NIMA 612 (2010) 241-253;

Appl. Opt. 49 (2011) 6816-6823.

SCL Laser Wire Profile Measurement System

Liu et al, NIMA 612 (2010) 241-253;

Appl. Opt. 49 (2011) 6816-6823.

Hardin et al, Opt. Express 19 (2011) 2874-2885.

Hardin et al, *Opt. Express* **19** (2011) 2874-2885.

IPAC'13, Shanghai, China, 12-17 May 2013

ANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Phase Tuning between Laser and H-Pulses

Propagation of Ion Beam and Light Beam

IPAC'13, Shanghai, China, 12-17 May 2013

CAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Phase Tuning between Laser and H-Pulses

IPAC'13, Shanghai, China, 12-17 May 2013

CAK RIDGE NATIONAL LABORATORY

Phase Tuning between Laser and H-Pulses

Propagation of Ion Beam and Light Beam

17 Parallel Laser Wire Profile Monitor

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

EDM Screens for Laser Wire System

Laser Wire Transfer Line						
Label	Description	Retract mm	Insert		Command	
LW_01	Station 01	-0.037		Rtn Lim	Set Pt	Ins Lim
LW_02	Station 02	0.042		Rtn Lim	Set Pt	Ins Lim
LW_03	Station 03	-0.058		Rtn Lim	Set Pt	Ins Lim
LW_04	Station 04	0.138		Rtn Lim	Set Pt	Ins Lim
LW_12	Station 12	-0.016		Rtn Lim	Set Pt	Ins Lim
LW_13	Station 13	0.069		Rtn Lim	Set Pt	Ins Lim
LW_14	Station 14	-0.021		Rtn Lim	Set Pt	Ins Lim
LW_15	Station 15	-0.016		Rtn Lim	Set Pt	Ins Lim
LW_32	Station 32	0.021		Rtn Lim	Set Pt	Ins Lim
LW_EMIT	Beam Block	0.000		Rtn Lim	Set Pt	Ins Lim

From EPICS, user can select one, multiple, or all scanners

EDM Screens for Laser Wire System

From EPICS, user can select scan range, step size, average number. Fitting is automatically conducted.

Simultaneous Profile Scan

Simultaneous Profile Scan

NT OF ENERGY

Estimated Beam Parameters (April 15, 2013)

	Amplitude	Beam Center	Beam Size	Offset	
Location	(mV)	(mm)	(mm)	(mV)	R ²
1H	257±3	22.460±0.019	2.317±0.024	7.3±0.2	0.999
1V	274±3	27.62±0.016	1.966±0.018	7.6±0.02	0.999
2Н	171 ± 5	11.632±0.027	2.445±0.032	5.0±0.1	0.95
2V	404±5	25.316±0.010	1.717±0.014	5.8±0.1	0.996
3Н	180±2	23.152±0.031	3.790±0.032	7.9±0.3	0.997
3V	316±4	32.776±0.017	1.991±0.023	8.7±0.2	0.997
4H	213 ± 4	28.920±0.026	2.298±0.034	7.4±0.2	0.983
4V	205±5	22.020±0.025	1.852±0.029	8.4±0.2	0.988
12H	224 ± 2	28.232±0.017	2.226±0.018	8.6±0.2	0.989
12V	158±2	28.412±0.022	2.4118±0.022	8.0±0.2	0.997
13H	234±2	21.844±0.018	2.576±0.020	9.5±0.2	0.984
13V	226 ± 2	27.180±0.019	2.440±0.021	8.4±0.2	0.998
14H	136 ± 2	30.396±0.028	2.470±0.030	7.3±0.2	0.997
14V	139±2	23.808±0.024	2.322±0.027	7.0±0.2	0.995
15H	108±1	22.060±0.034	2.734±0.033	8.2±0.2	0.998
15V	137 ± 2	22.156±0.027	2.269±0.027	8.5±0.2	0.999
32H	135±1	25.020±0.013	2.796±0.016	3.6±0.1	0.998
32V	215±2	19.304±0.009	1.802±0.012	2.9±0.1	0.995

3-D Visualization of Measured Profiles (April 15, 2013)

Profiles on September 13, 2012

Beam Status during LW Measurement

Mode-locked Laser

CAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

IPAC'13, Shanghai, China, 12-17 May 2013

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Commissioning Experience

Item	Findings	Solution
Laser Transport Line	Drift and vibration	Beam stabilization using active feedback Optical fiber based transport line (for low power)
Laser fluence	Over focusing of laser beam caused vacuum window breakdown	Avoid beam collimation optics close to measurement station. Ensure laser fluence below 1 J/cm ² .
Influence on beam	Electron collection magnets can cause tiny beam deflection	Correction magnet installed Orbit correction
Radiation hardness of laser	Laser driver (> 6 m from beam line) damaged in 1-2 days Unclear about laser head	Laser should be located outside the beamline for hadron machine
Image sensors	Gigabit Ethernet cameras (> 1.5 m from beamline)	Have to replace every 1-2 years
Motion control	Stepper motor (~ 30 cm from beam line); Picomotor actuators (1.5 m from beamline)	Stepper motors are very robust Open-loop picomotors have to be used

SUMMARY

- World-first demonstration of simultaneous H- beam profile scan using a single laser source.
- The system has been brought to operation level a single push-button initiates profile scan at 9 locations of SCL (corresponding to energy levels of 200 MeV -1 GeV).
- A number of laser based instruments have been commissioned/developed at the SNS accelerator complex.
- Laser based beam diagnostics at accelerator facilities is reliable and realistic and provides a useful tool for beam tuning and physics study.

