

MULTIPLE FUNCTION MAGNET SYSTEMS FOR MAX IV

Franz Bødker

Research & Technology

Danfysik A/S, Denmark

IPAC 2013, Shanghai

Outline

- Production of MAX IV magnet girders
 - What is special
 - Production status and mechanical performance
- Hall probe field mapping
 - Description of concept
 - Stability of alignment & measurements
- Harmonic coil measurements
 - Description of concept
 - Stability of the measurements
 - Some measurement results

Production of MAX IV magnet girders

- MAX IV designed for 3 GeV with very low emittance
- Danfysik is producing 20 each of M1, M2 and U3 with up to 12 magnets
- In total 60 dipoles, 220 steerers, 160 quads, 120 sextupoles, 120 octupoles
- Small Ø25 mm aperture in the multipoles

Top/bottom M1 girder as produced

Yokes machined out of one solid piece of low carbon steel

Machining and production

- Challenging tolerances of ± 0.02 mm over full length of up to 3.3 m
- Iterative machining refinement process
- First M1, M2 and U3 completed and machining finished for first 10 M1

results are within spec

• 3D measurement campaign

Positioning accuracy for multipoles

- Tolerance built-up is an issue for multipoles
- Special functional machining of sextupoles and octupoles

Multipole midplane surface are placed flushed to girder midplane within +0.00 / -0.01 mm

IPAC13, May 13, 2013

Hall probe mapper setup

- Precision Hall mapper on long granite table
- Laser feedback on longitudinal z-axis and linear encoders on x,y-axes
- Usual probe positioning not possible without line-of-sight though magnet
- Alignment by scanning over magnetic pins at know positions
- Short term position st.dev. < 2 μ m, long term drift <10 μ m

Short term repeatability

	Z (mm)	X (mm)
Round 1	2888.7707	-61.7454
Round 2	2888.7697	-61.7483
Round 3	2888.7695	-61.7465
Round 4	2888.7698	-61.7491
Round 5	2888.7709	-61.7448
St. Dev.	0.0006	0.0016

Scanning dipole from side & quadrupoles through small holes in yoke

IPAC13, May 13, 2013

Hall probe field mapping

- High stability temperature calibrated Hall probe allows on-the-fly mapping
- Large field grid measured on-the-fly of the combined function dipoles
- Interpolated on-the-fly data agree with step-and-go data within 1.6'10⁻⁴
- Repeated measurements of field integral stable within 7'10⁻⁵
- The alignment precision and stability more than adequate

Harmonic insertion coil concept

- For us a new harmonic insertion coil concept
- Coil inserted from girder end with external encoder and motor
- Mechanical coil positioning from girder reference surfaces
- Tangential coil with a 10.7 mm measurement radius
- One short harmonic coil segment for each magnet
- 3-5 coil segments per support rod, 13 segments in total
- Calibration of each segment \rightarrow phase and gradient strength
- Full test automation with storage of calibration and setup values

IPAC13, May 13, 2013

Permanent magnet based calibration guad

Calibration sextupole

Stability of the harmonic measurements

- Short term repeatability test, st.dev.
 - Field gradient variation 0.4.10-4
 - Higher harmonics below 0.1 unit
 - Magnet rotation variation 0.01 mrad
 - Very stable
- Simple test of thermal stability
 - Field gradient drift 0.2 unit/°C
 - Magnet rotation drift -0.03 mrad/°C
 - Quite modest thermal drift, no problem
- Long term stability, average for 6 quads
 - Disassembly of test jig and yoke
 - Three measurements over several days
 - Good stability after solving some test issues
 - Field gradient variation 2.10-4

 \blacksquare OK stability \rightarrow supports tuning of strength

Repeatability Thermal change/°C Test on M1 quad

Short term repeatability test on a quad

		5-1 -	
Field gradient strength	0.4	0.2	Unit, 10 ⁻⁴
Higher harmonics, n3-4	< 0.1	0.2	Unit, 10 ⁻⁴
Higher harmonics, n≥5	< 0.03	0.2	Unit, 10 ⁻⁴
Magnet center dX, dY	< 0.001	< 0.001	mm
Magnet rotation	0.01	-0.03	mrad

Long term stability with jig/yoke disassembly

Average result, 6 quads	Stability	
Field gradient strength	2	Unit, 10 ⁻⁴
Higher harmonics, n3-6	< 0.4	Unit, 10 ⁻⁴
Higher harmonics, n≥7	< 0.1	Unit, 10 ⁻⁴
Magnet center dX,dY	0.004	mm
Magnet rotation	0.14	mrad

Higher harmonics of an M2 quadrupole

- Pole end contributions $n=6,10,14 \rightarrow$ reduced for U1-5 quads by chamfering
- Remaining harmonic errors: mainly sextupole (n=3) and octupole (n=4)
- Remaining terms typically below 1 unit = $0.01\% \rightarrow$ pole profile is ok
- Measuring noise level is low
- Similar pattern for sextupole and octupole magnets

Measured higher harmonic content and st.deviation at nominal current

Higher harmonic variations with excitation

- Higher harmonics are relatively constant with excitation
- Exception is the skew and normal sextupole tend to grow with current
- Might be due to asymmetries in flux return paths & permeability
- Variation is only a few units
- Similar trends for sextupole & octupole magnets
- Test finished for first M1, M2 and U3 girder magnets

Summary

- MAX-lab magnet girders are machined to the required tolerances
- Hall probe field mapping with very good alignment and stability
- Harmonic coils inserted from girder end give high quality results
- The results are in general agreement with MAX-lab calculations
- No show stoppers so far \odot