

Karlsruhe Institute of Technology

FLUTE: A versatile linac-based THz source generating ultra-short pulses

<u>M.J. Nasse¹, E. Huttel, S. Marsching¹, A.-S. Müller¹, S. Naknaimueang¹,</u> R. Rossmanith¹, R. Ruprecht¹, M. Schreck¹, M. Schuh¹, M. Schwarz¹, P. Wesolowski¹, R.W. Assmann², M. Felber², K. Flöttmann², M. Hoffmann², H. Schlarb², H.-H. Braun³, R. Ganter³, L. Stingelin³

> ¹Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany ³Paul Scherrer Institut (PSI), Villigen, Switzerland

> > MeV

THz

Hz

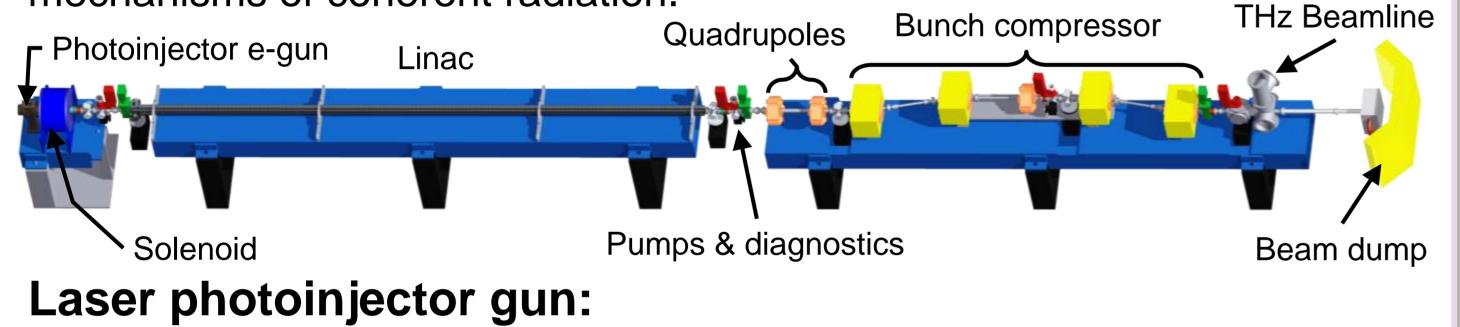
mm

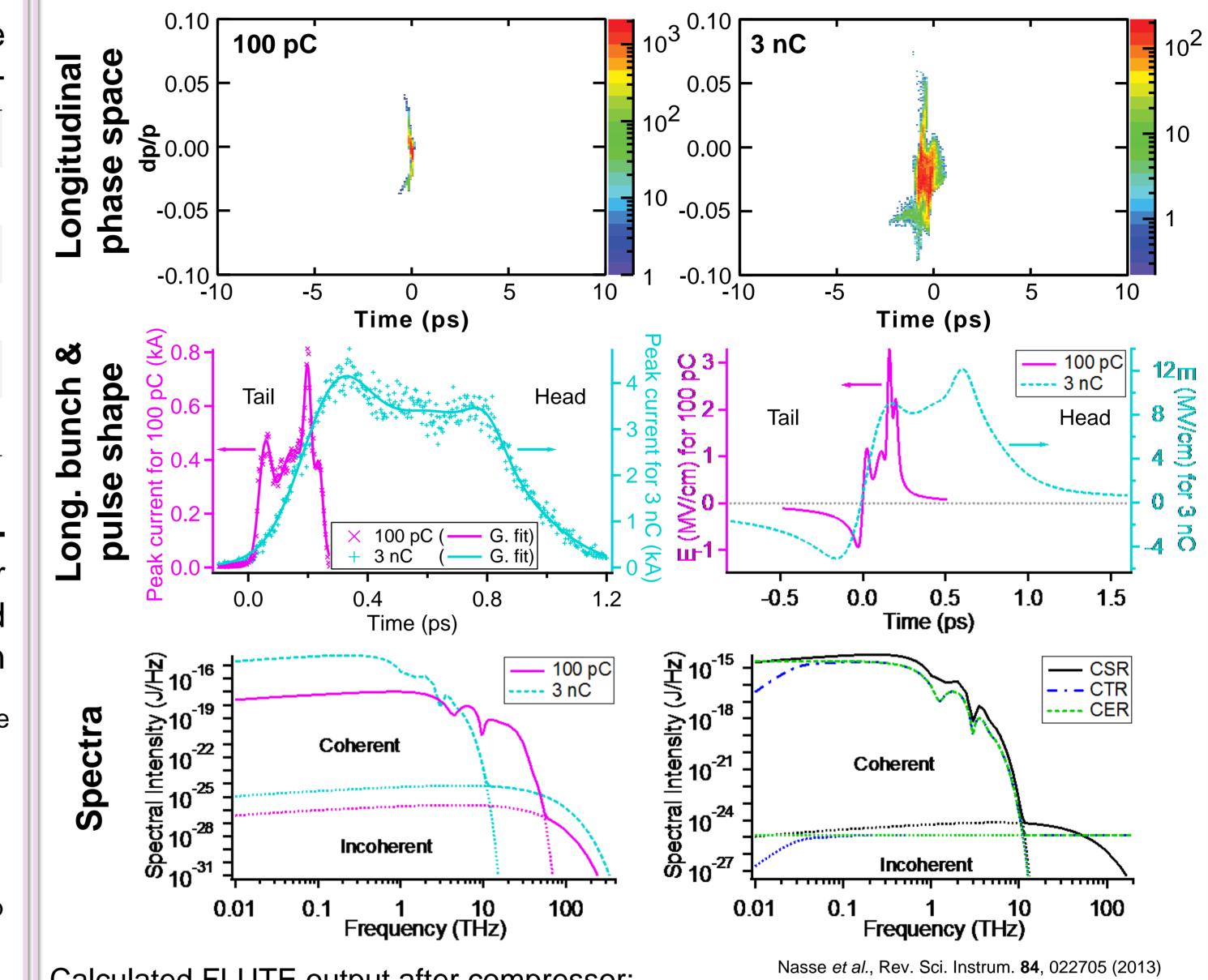
~41

~4–33

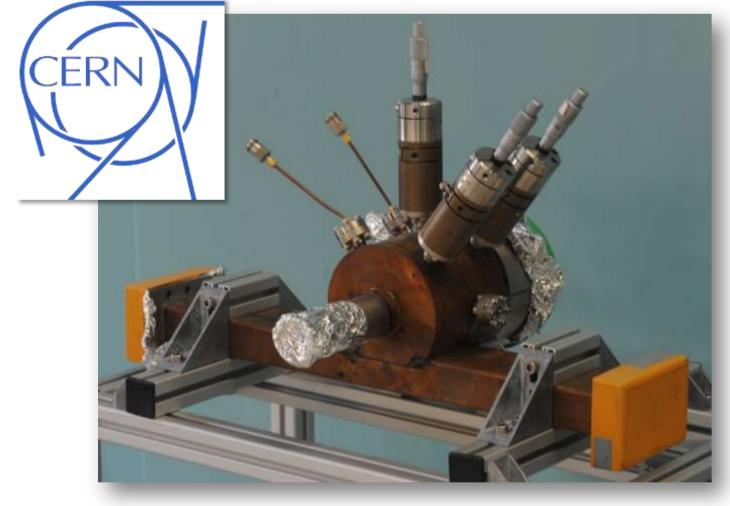
~28–36

10

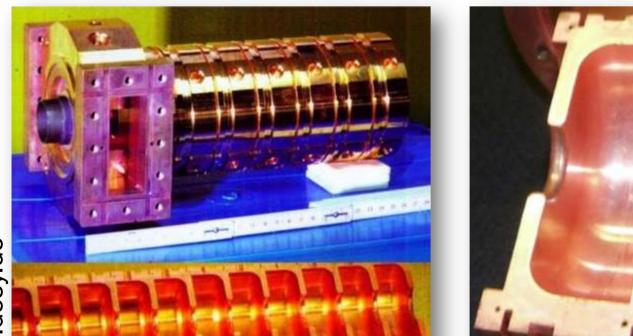

PAUL SCHERRER INSTITUT



FLUTE


Simulations

The Karlsruhe Institute of Technology (KIT) is realising a new versatile **linac-based THz source** named FLUTE ("Ferninfrarot Linac- Und Test-Experiment"). The presented design Final electron energy is carried out in collaboration with Electron bunch charge 0.001–3 nC the Paul Scherrer Institute (PSI) and the Deutsches Elektronen-Synchrot-Electron bunch length 13–270 fs ron (DESY). FLUTE has the **dual** Spectral bandwidth purpose of providing short highfield THz pulses for various Pulse repetition rate scientific applications and to serve -R₅₆ range as a **test facility** for the study of
 Table 1: FLUTE key parameters
 important open questions in accelerator physics. This is of particular importance in view of future ultrabroadband THz-mid infrared user facilities such as TBONE. For FLUTE, special emphasis is put on studies of bunch compression and beam stability as a function of bunch charge and of different generation mechanisms of coherent radiation. Quadrupoles



- CERN CTF (CLIC Test Facility) gun
- Designed for high currents

Linac:

- DESY Linac II structure
- Traveling wave linac
- $2/3\pi$ structure with 156 cells

Frequency	2.998	GHz		
Cells	2.5			
Peak E-field	~120	MV/m		
Peak power	~20	MW		
Output energy	7	MeV		
Bunch charge	≤3	nC		
Table 2. Cup parameters				

 Table 2: Gun parameters

PAUL SCHERRER INSTITUT

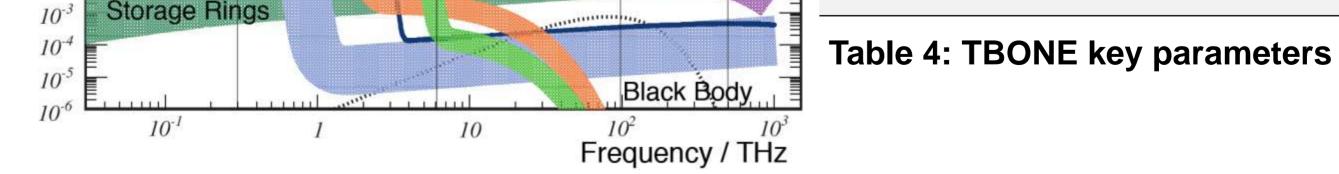
	Frequency	2.998	GHz
	Length	5.2	m
	Acc. gradient	~10	MV/m
	Peak power	~16	MW
	Output energy	~41	MeV

Calculated FLUTE output after compressor: Simulation tools: ASTRA (gun \rightarrow linac), CSRtrack (compressor) CSR: Coherent Synchrotron Radiation CTR: Coherent Transition Radiation CER: Coherent Edge Radiation Superconducting insertion TBONE device test stand Bending magnets Superconducting linac E-gun & injector Bunch compressor THz/ Hillenbrand et al., IPAC'10, WEPEA019, p. 2520 mid-IR beam-TBONE (THz Beam Optics for New Experiments) is a lines multi-user facility for the generation of quasi CW broadband, high-power, ultra-short, and coherent THz/mid-IR radiation, as well as x-ray pulses from bremsstrahlung, Compton: fs x-rays proposed at the KIT. FELIX JLab

att/d	10^{6}		1
/ Wa	10^{5}	FELBE	E
/ Xn	10 ⁴	Broadband Lab Schuces	
EX	10^{3} 10^{2}	Storage Rings JLab THe	E
eal	10	$ = (Iow - \alpha_c) \qquad \qquad$	
ш	1		
	10^{-1} 10^{-2}		F

Final electron energy	60–100	MeV
Electron bunch charge	10–100	рС
Electron bunch length	5	fs
Spectral bandwidth	0.1–150	THz
Pulse repetition rate	10	MHz

Accelerator physics tests


 Table 3: Linac parameters

FLUTE will allow systematic testing and optimisation of several machine parameters necessary to enhance the peak electric field/power, pulse length, and beam stability, for FLUTE & future short-pulse user-facilities:

- Bunch length with low & high charge (single-cycle electric field)
- Bunch compression schemes
- Comparison (simulation vs. experiment) of

coherent synchrotron, transition & edge radiation (CSR, CTR, CER)

• THz transport line (impedance), etc.

Scientific Experiments

The short intense THz pulses generated by FLUTE and future userfacilities such as TBONE are very interesting for many scientific applications like 2D Spectroscopy and **pump-probe** experiments. Here, in contrast to many conventional setups, the strong THz radiation is used as the pump pulse. These pulses couple to vibrational modes extending across large domains of a crystal lattice and allow studying interactions between molecules non-destructively, without heat-transfer.

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

