Development and Test of a P_kQ_L Control Procedure at KEK STF

M. Omet, A. Kuramoto, SOKENDAI, Hayama, Kanagawa, Japan H. Hayano, T. Matsumoto, S. Michizono, KEK, Tsukuba, Ibaraki, Japan

Introduction

In order to operate the superconducting cavities at the International Linear Collider (ILC) [1] near their maximum gradients, cavity input (P_k) and cavity loaded Q (Q_L) have to be controlled individually (P_kQ_L control [2]). In this scope an automated beam compensation procedure and a fully automated P_kQ_L control were developed and demonstrated.

In preparation of ILC the Superconducting RF Test Facility (STF) is operated at the High Energy Accelerator Research Organization (KEK). In the configuration for the quantum beam project [3] the linear electron accelerator consists beside others of two super conducting 9-cell TESLA type L band cavities driven by a single klystron in the Distributed RF Scheme (DRFS) and operated using digital Low Level RF (LLRF) control techniques [5].

Schematic of the digital LLRF feedback loop controlling two superconducting cavities at STF. Hardware and software components are represented by squares, data channels accessible on the μ TCA board via EPICS by rhombi.

Beam Loading

Beam loading induces a drop ΔV_{ind} in the cavity gradient, which can be derived from the cavity differential equation by considering only the beam

Amplitude versus time [µs] of an automatically generated beam FF table.

Vector sum gradient [MV/m] versus time [μ s] after an automated generation of a beam FF table.

Nominal Operation

Long time (1 hour) stabilities after fully automated P_kQ_L setting procedure (V1=16 MV/m, V2=24 MV/m, Q_1=9e6, Q_2=3e6) with beam (6.4 mA, 615 µs) and beam loading compensation.

	Vector sum	Cavity 1	Cavity 2	
$\Delta A/A_{RMS}$	0.009%	0.041%	0.031%	
$\Delta \Phi_{RMS}$	0.009°			

Gradients [MV/m] versus time [μ s] of cavity 1 (red), cavity 2 (blue), and vector sum (green) during PkQL operation with beam. The virtual quench limits are indicated by black lines.

contribution.

Cavity 1 gradient [MV/m] versus time [μ s] during the flattop covering the beam transient, during which beam loading induces the gradient drop ΔV_{ind} .

Automated Beam Compensation

For stable beam acceleration flat gradients are

Long time (1 hour) vector sum stabilities under nominal operation (V₁=16 MV/m, V₂=24 MV/m, $Q_{L1}=Q_{L2}=3e6$) with beam compensation.

	Beam off	Beam on (6.6 mA, 615 µs)
$\Delta A/A_{RMS}$	0.008%	0.009%
$\Delta \Phi_{RMS}$	0.008°	0.008°

Fully Automated P_kQ_L Control

The essentials for LLRF cavity control are to operate at flat gradients during beam transient with a constant RF output over filling and flattop time in order to operate the klystron near to saturation. Only in P_kQ_L operation both requirements can be fulfilled. In ILC the cavity gradient spread will be ±20% around the average and all cavities will be operated 5% below their respective quench limits.

Conclusion

Digital LLRF control procedures for ILC-like operation covering beam loading compensation, nominal operation, and fully automated P_kQ_L operation have been developed and demonstrated at KEK STF. The vector sum long-time stabilities under P_kQ_L operation were comparable to those under nominal operation. All introduced ILC requirements were fulfilled.

References

- [1] http://www.linearcollider.org
- [2] K.L.F. Bane, "RF Distribution Optimization in the Main Linacs of the ILC", Proceedings of PAC07, Albuquerque, 2007, WEPMS037
- [3] A. Kuramoto, "Alignment Detection Study using Beam Induced HOM at STF", Proceedings of IPAC13, Shanghai, 2013, MOPME019.
- [4] S. Fukuda, "Distributed RF Scheme (DRFS) -Newly Proposed HLRF Scheme for ILC", Proceedings of LINAC10, Tsukuba, 2010, MOP027.

required. These can be achieved by adding a beam feedforward (FF) table to the base FF table. By this additional driving power during beam transient is supplied. Since the beam current profile is not flat a automated beam FF shape generation was established.

Schematic of the amplitude versus time for a base FF table (orange) and a beam FF table (red).

Schematic of cavity 1 (red), cavity 2 (blue), and vector sum (green) gradients with corresponding RF output for a) nominal operation, b) nominal operation with beam, and c) P_kQ_L operation with beam.

Determination of the working cavity points for flat flattops (dV/dt=0) and on resonance ($\Delta \omega$ =0):

 [5] T. Miura, "Performance of the µTCA Digital Feedback Board for DRFS Test at KEK-STF", Proceedings of IPAC11, San Sebastian, 2011, MOPC157.

Contact Information

Mathieu OMET

The Graduate University for Advanced Studies KEK High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan PHS: +81-29-864-4616

Fax: +81-29-864-3182 (Accelerator office)

e-mail: momet@post.kek.jp