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Abstract

At the Relativistic Heavy Ion Collider (RHIC) at BNL

the physics program includes collisions between beams of

polarized protons at high beam energies. Maintaining the

proton’s polarization is vital and preserved primarily by ap-

plication of a pair of Siberian snakes [1]. Measurements

from recent high-energy physics runs indicate polarization

loss during acceleration between 100 and 250 GeV [2].

Based on analytic estimations for off-momentum particles

and/or beams, a nonzero difference in DX prime - the dis-

persion function angle - between the snakes can result in a

spread in the spin tune [3, 4], or equivalently, the conditions

of snake resonances in close proximity to the beam during

acceleration. Requiring that DX prime at the two Siberian

snakes in RHIC be equal would reduce the spin tune shift

for off-energy particles so helping to maintain polarization

during the energy ramp. Preservation of half-integer spin

tune is also important for future operation of the spin flip-

per [5] at store. In this report, the matching scheme and

simulations using MAD-X will be presented together with

a newly applied method based on response matrices to take

power supply limitations into account in the minimization

procedure.

INTRODUCTION

In order to match the DX primes at the two snakes, one

needs to identify the effective knobs in the machine for con-

trolling the horizontal dispersion.

Three types of magnets–dipole, quadrupole and skew

quadrupole–have been considered as potential knobs for

controlling dispersion. The coupling of the vertical dis-

persion to the horizontal plane by skew quadrupoles would

be very ineffective because the vertical dispersions are zero

by design. Dipole magnets can control the dispersion effec-

tively but involves change of circumference and orbit. Con-

trolling the dispersion by the quadrupole feed-down effect

will certainly introduce beta-beat and tune change. Fortu-

nately, moderate (∼ 20%) beta-beat can either be tolerated

or fixed by optics corrections. Tune changes can be com-

pensated by tune controlling quadrupoles with minimal dis-

turbance to the dispersion functions.

The change in the dispersion function is proportional to

the change of quadrupole integrated strength Kj [6]

�Di = −Gx(si, sj)KjDj
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Here,

Gx(si, sj) =

√
β(si)β(sj)

2 sinπμ
cos (πμ− |φ(si)− φ(sj)|)

(1)

Apparently, quadrupoles at higher dispersion location are

more effective for controlling the dispersion functions.

The beta-beat introduced by altering quadrupole strength

is

�β

β
= −β(sj)Kj

2 sinπμ
cos (2πμ− 2|φ(si)− φ(sj)|) (2)

It is worth to note that there is a factor of 2 difference in

the phase term of Eq. 1 and 2. One could select existing

π-doublet quadrupoles such that introduced tune change is

zero, beta-beat outside the π-doublet range is zero but the

dispersion change over the ring is nonzero.

π-DOUBLET SOLUTION
This effort was initiated by E. Courant and D. Trbojevic.

The quadrupoles being selected are marked in Fig. 1. The

Figure 1: Beamline around IP6, quadrupole QFZ, QDZ,

QFX and QDX are used for matching in π-doublet solution.

change of quadrupole strength comply with
⎧⎪⎪⎨
⎪⎪⎩

KFX = KF ∗ (1.0 +DLTG)
KFZ = KF ∗ (1.0 +DLTG)
KDX = KD ∗ (1.0−DLTG)
KDZ = KD ∗ (1.0−DLTG)

Here, DLTG is the relative change of the quadrupole

strength.

The optics being used in the matching simulation is for

Run-12 ramp at time 250 s. The DX prime difference at

the two snakes was reduced from 0.05 to 1 × 10−6, with a

relative quadrupole strength change of 7.25%.

The quadrupoles in the simulation are not powered inde-

pedently. New power supplies are required for implement-

ing this scheme.

QF8+QF9 SOLUTION
In RHIC, quadrupoles in interaction region (IR) and the

two ends of the arcs can be controlled individually. The
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dispersion functions are designed to be small in the IRs.

Therefore, the QF8 and QF9 magnets with moderate dis-

persion functions are selected for matching DX prime. The

total number of these magnets are 12 [7].

In addition to DX prime at the snakes, there are con-

straints on other parameters in the matching to minimize

the disturbance to the other optical parameters. These pa-

rameters are the DX and beta stars at IP6 and IP8, two

interaction points for experiments; the global tunes and

beta-beat at one of the quadrupole of each arc. The DX

prime difference was reduced from 0.05 to 2 × 10−5 by

this scheme. The beta-beat is ±30% peak-to-peak in the

horizontal plane, ±8% in the vertical plane. No dispersion

peak was introduced along the ring.

The introduced beta-beat are shown in Figs. 2 and 3.

Figure 2: Introduced horizontal beta-beat in QF8+QF9 so-

lution.

Figure 3: Introduced vertical beta-beat in QF8+QF9 solu-

tion.

The horizontal dispersion functions of the ring are shown

in Fig. 4.

The initial and final strengths of all the 12 magnets and

the relative changes are shown in Table 1.

Figure 4: Baseline and new horizontal dispersion functions

in QF8+QF9 solution.

Table 1: Initial and Final Strength of QF8 and QF9 Mag-

nets

Magnets Final Initial Relative (%)

qfa6 0.0797930 0.0851501 -6.29

qfa8 0.0875657 0.0851501 2.84

qfa10 0.0862944 0.0807370 6.88

qfa12 0.0826227 0.0807370 2.33

qfa2 0.0843956 0.0823113 2.53

qfa4 0.0823227 0.0807370 1.96

qfb6 0.0840926 0.0845783 -0.57

qfb8 0.0844324 0.0845783 -0.17

qfb10 0.0805808 0.0795547 1.28

qfb12 0.0734157 0.0795547 -7.71

qfb2 0.0839466 0.0812185 3.35

qfb4 0.0758067 0.0795547 -4.71

The allowed relative change of these magnets is -3–0%.

There are 5 required magnet strengths exceeding the limits,

7 magnets that need opposite polarity. This scheme would

also require certain amount of power supply work.

CONTROLLING REQUIRED STRENGTH
CHANGE

In the simulation in the above section, we attempted to

put the power supplys’ limits in the matching as constraints

in order to find a practical solution. No solution could be

found by the MAD-X matching module.

A response matrix and SVD (single value decomposi-

tion) [8] technique was then employed to match DX prime

while being able to control the changes of quadrupole

strengths. In this scheme, we first need to check the lin-

earity of the response of parameters of interest to variables

(for our case, DPX and tunes to quadrupole strength). The

calculation done using MAD-X confirmed the linearity of

the response. At the same time, the response matrix for pa-

rameters of interest to variables was established and stored.
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Then the response matrix was inverted using the SVD al-

gorithm and the required changes of quadrupole strength

and the resulting parameters of interest were calculated.

As a confirmation, parameters of interest were simulated

by MAD-X as well by putting in the changes of strength

calculated in the previous step.

With a regular SVD, 2 of the final quadrupole strengths

exceeded their limits. Cutting eigenvalues and Tikhonov

regulation [9] have been applied to limit the required

quadrupole strengths which would end with less optimal

matching result. In addition, one other trick is to set the

two magnets to be at the maximum strengths allowed. The

last one resulted in the best overall performance. DX prime

difference of the two snakes was reduced by a factor of 3

with all magnets within limits.

The corresponding beta-beat are shown in Figs. 5 and 6.

Figure 5: Introduced horizontal beta-beat with controlling

required strength change.

Figure 6: Introduced vertical beta-beat with controlling re-

quired strength change.

The horizontal dispersion is shown in Fig. 7.

Figure 7: Baseline and new horizontal dispersion functions

with controlling required strength change.

SUMMARY
To match DX prime at the two snakes for minimal spin

tune spread, the QF8 and QF9 magnets are chosen because

of their high dispersion functions. Matching with MAD-

X produced good results in terms of DX prime matching,

global beta-beat and dispersion. However, the results are

not practical because of power supplys’ limits. The em-

ployment of response matrix and SVD technique is able

to keep all magnets within their limits and reduce the DX

prime difference by a factor of 3.

REFERENCES
[1] Thomas Roser, L Ahrens, J Alessi, M Bai, J Beebe-Wang,

JM Brennan, KA Brown, G Bunce, P Cameron, ED Courant,

et al. Accelerating and colliding polarized protons in rhic

with siberian snakes. EPAC2002, June, 2002.

[2] V Schoefer et al. Rhic polarized proton operation in run-12.

2012.

[3] M Bai, V Ptitsyn, and T Roser. Impact on spin tune from

horizontal orbital angle between snakes and orbital angle be-

tween spin rotators. CAD-Tech-Note, CA/AP/334, 2009.

[4] V Ptitsyn, M Bai, and T Roser. Spin tune dependence on

closed orbit in rhic. In Proceedings of International Particle
Accelerator Conference, 2010.

[5] M Bai, C Dawson, Y Makdisi, W Meng, F Meot, P Oddo,

C Pai, P Pile, and T Roser. Commissioning of rhic spin flip-

per. Proceedings of IPAC, 10, 2010.

[6] Shyh-Yuan Lee. Accelerator physics. World Scientific Pub-

lishing Company, 2004.

[7] H Hahn. Rhic design manual. Revision of October, 2000.

[8] Edel Garcia. Singular value decomposition (svd) a fast track

tutorial. Using the Singular Value Decomposition, 2006.

[9] Andrei Nikolaevich Tikhonov, AV Goncharsky,

VV Stepanov, and AG Yagola. Numerical methods for
the solution of ill-posed problems. Kluwer Academic

Publishers Dordrecht, 1995.

TUPWO074 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

2032C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D01 Beam Optics - Lattices, Correction Schemes, Transport


