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Abstract

Traditional space charge driven resonances, such as
beam halo, arise due to the underlying linear nature of ac-
celerator lattices. In this talk, we present initial results on
a new class of intrinsically nonlinear lattices, which intro-
duce a large tune spread naturally. The resulting nonlinear
decoherence suppresses the onset of beam halo.

INTRODUCTION

High intensity beams have broad applications for high
energy physics, neutron sources, and in the nuclear indus-
try. For example, at Fermilab the Project X machine will
deliver MW proton beams in the range of 3 to 120 GeV
for the purposes of generating neutrinos for the proposed
Long Baseline Neutrino Experiment, muons and kaons for
the measurement of rare decays. It will also be used for
the creation of exotic nuclei, and as a testbed for the trans-
mutation of nuclear waste. For the intense beams desired
for these purposes it is necessary to keep beam loss to a
minimum to prevent activating the surrounding equipment.
For example, in the 1.4 MW CW beam at SNS, it is nec-
essary to keep beam loss to the pipe below 1 W/m. It is
therefore crucial for these future applications that methods
of mitigating intensity-dependent effects be developed.

Traditional beams gain stability from Landau damping,
where a spread in the ensemble frequency response to an
external perturbation prevents the ensemble as a whole
from gaining energy. However, various other ensemble ef-
fects can result in a loss of Landau damping. Traditional
linear lattice storage rings must still be designed to avoid
various orders of rational tune resonances to maintain sta-
bility.

To bypass resonance-based restrictions on beam current,
Danilov and Nagaitsev [1] proposed the use of controlled
nonlinear lattices which still preserve one or two constants
of the transverse motion. This assures bounded trajectories,
while benefiting from a very large spread in frequencies
for each trajectory. This nonlinear decoherence is the pri-
mary subject of this proceeding, and we hope to illustrate
its properties with a simple example.
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NONLINEAR DECOHERENCE
A key distinction between nonlinear decoherence and

Landau damping is that Landau damping is a property of
the particle ensemble, while nonlinear decoherence is a
property of the lattice. As such, nonlinear decoherence will
occur regardless of the beam intensity or the specifics of the
underlying beam distribution.

Consider an example Hamiltonian which has a purely
quartic potential:

H =
p2
x

2
+

1

4
λ4x4 (1)

This Hamiltonian is completely integrable, and the Hamil-
tonian in terms of the action variable is

H =

(
λJx
2α

)4/3

(2)

where α =
√
π Γ(5/4)/Γ(7/4) is a constant. The tune for an

oscillation with an action J is therefore
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Because this Hamiltonian has an amplitude-dependent
tune, any forcing that is initially resonant will eventually
be detuned out of resonance by the single particle dynam-
ics. This is a purely single particle effect, and in no way
depends upon the ensemble of particles proper. For a har-
monic oscillator Hamiltonian, which is the basis of lin-
ear accelerator lattices, the Hamiltonian in the action-angle
variables is

H = Jω0 (4)

for a frequency ω0, and hence the tune is independent of
the amplitude. In this case, a periodic forcing would drive
the particle to arbitrarily large amplitudes. This amplitude-
dependent tune is the heart of nonlinear decoherence.

Despite originating from different physical effects, Lan-
dau damping and nonlinear decoherence have many similar
traits. To see this, consider the two plots in Fig. 2 depicting
the total single particle energy for a two-dimensional en-
semble of particles initially populating a fixed Hamiltonian
value H0. The left plot is the total energy for an ensem-
ble of harmonic oscillators with a small frequency spread,
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Figure 1: The p − x phase space trajectory of a quartic
oscillator without resonant forcing (red) and with a forcing
resonant with the initial frequency (blue).
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Figure 2: The average particle energy for the harmonic os-
cillator (left) and quartic oscillator (right) for many reso-
nant forcing periods.

resonantly forced at the central frequency. The right is an
ensemble of quartic oscillators. Because there is a curve
of Jx − Jy space which yields a frequency spread at fixed
energy, the ensemble has a natural frequency spread.

In practice both prevent the growth of energy from res-
onant forcing – if tracked for long enough the nonlinear
decoherence shows some super-periodic oscillations in the
energy but no resonant growth, while the Landau damping
has saturated out. The key feature that distinguishes the
nonlinear decoherence is that it does not require many par-
ticles, or an interaction with the environment, to initiate its
effects. There is no straightforward way to achieve a loss
of nonlinear decoherence.

BEAM HALO IN LINEAR LATTICES

To test these results in a more realistic setting, we
consider the beam core-halo model described by Gluck-
stern [2]. In this model a mismatched “core” experiences
transverse breathing at the betatron tunes. This can reso-
nantly force particles not in this core to large amplitudes,
before the nonlinear space charge forces outside the beam
core proper detune the resonant forcing. As demonstrated
by Bruhwiler [3], this can be rigged to rapidly form if a
“pre-halo” of matched particles is co-propagating with the
mismatched core.

(a) Blue dots indicate pre-halo particles outside of 2 RMS beam radius

(b) Particles in the pre-halo begin making large amplitude oscillations
driven by the resonant space charge forcing of the beam core

Figure 3: Coherent linear oscillations of the beam envelope
drive halo formation.

The first test case is the conventional linear lattice, com-
prised of a 2 m drift space with equal beta functions,
matching a single element of the IOTA test ring design.
We use an effective double-focusing element to mirror the
more complicated optics of the IOTA lattice. We use a
100 A CW beam with γ0 = 2 and zero longitudinal en-
ergy spread. The beam core is matched to a lattice with a
beta function 30% larger than the actual lattice. As can be
seen in Fig. 3, particles in the pre-halo are rapidly forced to
twice the core radius, withing 500 passes through this trial
lattice.

Linear lattices are commonplace because of their regular
dynamics. However, they are highly susceptible to reso-
nances such as the beam halo described here. This is be-
cause the frequency of oscillations is independent of the
amplitude of transverse motion – this allows conventional
resonant forcing by any perturbation. Traditional mitiga-
tion schemes, such as the addition of octupoles to an oth-
erwise linear lattice, introduce some amplitude-dependent
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tune content to detune a particle trajectory from resonance.
However these schemes can reduce the dynamic aperture.
We instead consider an alternative approach.

INTEGRABLE ELLIPTIC LATTICE
By comparison, we examine the integrable elliptic lattice

(IEL), which yields completely integrable two-dimensional
motion for its transverse particle trajectories. The effective
single-turn Hamiltonian, in the normalized coordinates, is
given by

H(px, py, x, y) =
1

2

(
p2
x + p2

y

)
+

1

2

(
x2 + y2

)
+
f2(ξ) + g2(η)

ξ2 − η2

(5)

Here

ξ =

√
(x+ c)2 + y2 +

√
(x− c)2 + y2

2c

η =

√
(x+ c)2 + y2 −

√
(x− c)2 + y2

2c

(6)

are hyperbolic coordinates with foci at x = ±c. The two
potential functions are

f2(ξ) = ξ
√
ξ2 − 1[d+ t cosh−1(ξ)]

g2(η) = η
√
1− η2[b+ t cos−1(η)]

(7)

where d, b, and t are free parameters. We have taken d = 0,
b = π/2, and t = −0.5. We show the equipotential surfaces
for this Hamiltonian in Fig. 4. The issue of beam matching
is intimately related to the equipotential surfaces depicted.

The Hamiltonian here is a constant of the motion, and
there exists a second constant of the motion for the IEL
lattice. This guarantees bounded regular motion that re-
mains almost regular under perturbations, as described by
the KAM theorem. However, because the Hamiltonian is
strongly nonlinear, there is not a single “tune” in the way
a conventional linear lattice has a tune. In this way, tune
diagrams are irrelevent for IEL type lattices.

Any function of the invariants of motion form a station-
ary solution to the Vlasov equation [7, 8]. For strong fo-
cusing lattices, these are the Courant-Snyder invariants [6].
The IEL similarly has two invariants, and we have chosen
to match to the total Hamiltonian. As a result of this, a
beam with a phase space distribution that is a delta func-
tion in the Hamiltonian

f(~pN , ~qN ) = δ (H(~pN , ~qN )− ε0) (8)

will be a fixed point which uniformly fills all two-
dimensional projections in phase space, with the x − y
projection determined by the contour V (~qN = ε0). This
ε0 takes the role of the transverse emittance in a conven-
tional linear lattice. Indeed, this is equivalent exactly to the
Courant-Snyder invariant in the limit that all the nonlinear
components of the Hamiltonian vanish.

Figure 4: Equipotential surfaces for the IEL potential.

This is the value of the isoenergetic contours in Fig. 4
– they mark the transverse beam profile for a properly
matched beam in an IEL. There is likely a beam matching
that separates out two individual invariants [4], equivalent
to the vertical and horizontal emittances in linear lattices,
and this remains open to exploration.

By matching a core with a 30% larger beta function as
with the linear lattice, and then a properly matched pre-halo
is added. As can be seen in Fig. 5, the beam rapidly equi-
librates to a stationary solution. There are no periodic core
oscillations to drive a resonance, and the beam is totally
stable.

Interestingly, these beam configurations closely resem-
ble the results of a mismatch without space charge, or
a proper matching with space charge. Generically, these
nonlinear lattices rapidly filament in phase space, reaching
a quasi-static equilibrium distribution so long as the ini-
tial distribution is sufficiently close in form to a properly
matched distribution.

Danilov and Nagaitsev also discuss a chaotic bounded
octupole lattice, to be discussed in a later publication [5],
and which when tested yielded similar results. This would
seem to suggest that a second invariant of the motion is
not a necessary condition for bounded nonlinear trajecto-
ries. The exact interplay between integrability and space
charge forces for a general integrable Hamiltonian remains
an open question.

CONCLUSION

This demonstrates a very promising first step for the pro-
posed nonlinear lattices with two invariants. In a situation
rigged for failure, the nonlinear decoherence of the lattice
prevents completely the onset of beam halo in a situation
where a linear lattice cannot cope. Future work at the In-
tegrable Optics Test Accelerator will elucidate the single
particle properties in the presence of realistic lattice issues
such as fringe fields, dispersion, and other properties which
may break the integrability of the pure two-dimensional
system.
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(a) Blue dots indicate pre-halo particles outside of 2 RMS beam radius

(b) The IEL beam rapidly equilibrates to the properly matched physical
dimensions with no halo formation

Figure 5: Nonlinear decoherence prevents the rapid forma-
tion of beam halo in the IEL.

We have presented preliminary results for the efficacy of
a novel lattice design which uses controlled nonlinearities
to maintain the dynamic aperture while introducing nonlin-
ear decoherence to the single-particle dynamics. It is this
effect which efficiently prevents a variety of resonances –
here we have discussed the resonant interaction of beam
mismatch oscillations and space charge to produce a beam
halo. We have shown that these lattices are capable of com-
pletely preventing the formation of beam halo where a lin-
ear lattice would see the halo instability immediately. This
is a promising initial result for future advances in the inten-
sity frontier.
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