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Abstract 
The 70,000 tons of US stored spent nuclear fuel (SNF) 

from conventional nuclear reactors is a resource that could 
provide all US electrical power for a century. Or, the SNF 
could provide a great amount of process heat for many 
applications like producing green diesel fuel from natural 
gas and renewable carbon. An accelerator system like the 
SNS at ORNL can generate neutrons to convert SNF into 
fissile isotopes to provide high temperature heat using 
technology developed at the ORNL Molten Salt Reactor 
Experiment. In the Green Energy Multiplier * Subcritical 
Technology Alternative Reactor (GEM*STAR) [1], the 
accelerator allows subcritical operation (no Chernobyls), 
the molten salt fuel allows volatiles to be continuously 
removed (no Fukushimas), and the SNF does not need to 
be enriched or reprocessed (to minimize weapons 
proliferation concerns). The molten salt fuel and the 
relaxed availability requirements of process heat 
applications imply that the required accelerator 
technology is available now. A new opportunity has 
arisen to use GEM*STAR to reduce the world’s inventory 
of weapons-grade plutonium leaving only remnants that 
are permanently unusable for nuclear weapons. This could 
expedite the exploitation of this new technology. 

GEM*STAR  

 
 
Figure 1: Conceptual arrangement of a GEM*STAR 
reactor unit configured to produce electricity. To produce 
diesel fuel, the secondary salt loop heats CH2 and H2O to 
produce CO and H2 for the Fischer-Tropsch process.  

GEM*STAR is a graphite-moderated, thermal-
spectrum, molten salt fueled reactor that is operated using 
an external accelerator to direct protons onto an internal 
spallation target. GEM*STAR can be operated with many 
fuels, without redesign, for process heat and/or for 

electricity generation. Figure 1 shows its basic 
components, where the active volume is 93% graphite 
(gray) and 7% molten salt made up of an appropriate 
eutectic mixture of lithium, uranium, plutonium, and/or 
thorium fluorides with a melting point above 500 C.  
Safety features of the design include the 500 MWt power 
output design limit, corresponding to not needing 1) a 
critical mass of fissile material for operation and 2) 
“defense in depth” measures for loss-of-coolant accidents 
since the heat generated by decays of fission products 
after the accelerator is turned off can be dissipated by 
passive external air cooling. 

A helium flow over the hot core removes volatile 
radioactive isotopes and carries them to a relatively small 
underground tank where they are separated out 
cryogenically or with a centrifuge and then safely stored 
while they decay. This reduces the inventory of volatile 
isotopes in the reactor by a factor of a million compared 
to reactors used at Fukushima. 

 

 
Figure 2: Concept of operating with equal fill and removal 
rates to maintain a constant reactor performance.   
 

An essential feature of the design is the concept of 
feeding the reactor with a steady flow of fuel such that the 
concentration of fission products within the reactor stays 
constant for most of the 40-year reactor lifetime. As the 
fuel is fed into the reactor at a rate that maintains the 500 
MWt output, an equal amount leaves the core through the 
salt overflow shown in figure 1 into a storage area under 
the core. Figure 2 shows an equivalent diagram of how 
the concentration of fission products reaches an 
equilibrium that can be maintained by this concept of 
adding molten salt fuel and removing it at the same rate. 

Although the first approach to equilibrium takes some 
time (~5 years), a subsequent reactor can use the molten  ____________________________________________ 
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salt accumulated under the first reactor to start in an 
equilibrated state. Note that the heat from decaying 
reaction products will keep the overflow liquid from 
solidifying and that the radioactive fuel under the core can 
be moved to the next reactor using helium gas pressure. 

We take the 1 MWb performance of the SNS SRF 
Linac at less than 10% duty factor as an existence proof 
that a CW Linac could make at least 10 MWb. Further, 
molten salt fuel for off-line process heat is an “end-run” 
around the reliability questions that have usually been 
raised regarding accelerator-driven reactors. The most 
stringent requirement has been the need to avoid 
accelerator trips of even a few seconds because of thermal 
stresses and consequent fatigue of solid pellets in fuel 
pins. This objection is not applicable to molten salt fuels.  
Longer-term interruptions that may affect electricity 
production are also not very important for off-line 
production of diesel fuel, which is our first objective. 

One of the required safety aspects of GEM*STAR is 
the use of a proton accelerator to allow subcritical 
operation. Without a critical mass in the core, fission 
stops when the accelerator is turned off. In addition, 
GEM*STAR with accelerator, molten salt fuel, and 
graphite moderator allows the reactor itself to be simpler, 
less expensive, and intrinsically safe. Namely, 
GEM*STAR does not need mechanical control rods, a 
containment vessel to protect against escaping volatile 
radioactive elements, or a pressure vessel. Expensive 
chemical reprocessing is not needed for several fuel 
cycles such that it can be put off for 200 years. 

In short, the complexity of modern nuclear reactors that 
many people are concerned by is shifted in GEM*STAR 
such that the complexity is in the accelerator, not the 
reactor or the fuel. 

People sometimes cite problems with graphite reactors 
due to the Wigner Effect, wherein accumulated neutron-
induced atomic displacements suddenly realign and cause 
an energy spike. In early days of graphite reactors, the 
temperature had to be periodically raised above 250 C to 
anneal the graphite to prevent this (see the Wikipedia 
articles on Wigner Effect and Windscale Fire). Annealing 
is not necessary in the GEM*STAR design, which 
operates above the annealing temperature.  

Fast spectrum reactors or breeder reactors are often 
cited as a method to do what we want to do with 
GEM*STAR. The usual question is “why use an 
accelerator to do what can be done with a control rod?” 

Here are some reasons. Compared to a thermal 
spectrum made possible by graphite moderator, the fission 
cross-sections for a fast reactor are many times smaller 
and the relative sensitivity to fission products is greater.  
This means you need many more neutrons (requiring 
more than 100 critical masses in the reactor), more 
responsive control rod feedback (the fraction of delayed 
neutrons is less than in a normal reactor), and the fuel has 
to be reprocessed to remove the fission products 
(chemically separated, which is a weapons proliferation 
concern). 

WEAPONS GRADE PLUTONIUM (W-Pu) 
The GEM*STAR design is appropriate for many fuels, 

especially to convert fertile material to fissile ones (U238 
to Pu239 and Th232 to U233). Where the need is greatest 
depends on the country and situation. In the US, SNF is a 
growing issue that could be addressed with GEM*STAR, 
while in India, thorium is abundant and power needs are 
great. 

However, with no change in design, GEM*STAR can 
provide neutrons to control reaction rates for fissile 
materials that were produced for weapons. As we will 
show, it destroys W-Pu so well that it is the most 
compelling first application. That it can turn a $50B 
expense into a profit for the US also adds to its attraction.  

A plutonium bomb uses high explosives to compress 
Pu239 to form a critical mass. At just the right time in the 
compression, neutrons are injected into the mass to 
initiate the explosion. If enough Pu240, a neutron emitter, 
is in the mass, it can cause the explosion to start 
prematurely and reduce the effectiveness of the explosion.  
Weapons-grade plutonium, then, requires less than 7% 
Pu240. The US and Russia made many tonnes of W-Pu. 
According to the year 2000 U.S.-Russian Plutonium 
Management and Disposition Agreement [2], each 
country should each destroy at least 34 tonnes of it. The 
agreement specifies that each country must agree to how 
the other achieves this goal and that the two countries 
should destroy the W-Pu in lock step. 

The present situation is that the US has decided to mix 
the W-Pu with uranium as oxides (MOX) to be placed in 
fuel rods to be burned in conventional light water 
reactors. Russia’s plan is to use a fast breeder reactor. 

 

 
 
Figure 3: A GEM*STAR unit to generate heat by burning 
W-Pu while making remnants unusable for nuclear 
weapons. Four GEM*STAR units will treat 34 tonnes of 
W-Pu to provide 80 billion gallons of diesel fuel, which is 
about what the DOD needs for the next 30 years. 
 

Figure 3 shows a conceptual picture of W-Pu utilization 
in GEM*STAR. A 2.5 MWb accelerator generates 
500 MWt, reducing 30 g of W-Pu to 7.5 g per hour and 
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