
GPU-ACCELERATED SPIN DYNAMICS AND ANALYSIS FOR RHIC∗

Dan T. Abell† , Dominic Meiser, Tech-X Corp., Boulder, CO, USA
Desmond P. Barber, DESY, Hamburg, Germany

Mei Bai, Vahid H. Ranjbar, Brookhaven National Laboratory, Upton, NY, USA

Abstract

The elucidation of nucleon spin structure benefits from
highly polarized beams in storage rings. Accurate and fast
spin dynamics simulations are a valuable tool for optimiz-
ing beam polarization. We describe the integrators and the
performance of a new spin-orbit tracking code. These in-
tegrators use quaternions and Romberg quadratures to ac-
celerate both the computation and the convergence of spin
rotations. We exploit the inherently data-parallel nature of
spin tracking to accelerate our algorithms on graphics pro-
cessing units.

INTRODUCTION

Elucidating the origin of nucleon spin [1] is the princi-
pal focus of polarized beam experiments at the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Lab [2].
Because statistical uncertainties scale inversely with the po-
larization squared [3], optimizing the polarization is essen-
tial for efficient use of experimental resources.

Computer simulations serve an important rôle in under-
standing and improving beam polarization. For example, the
invariant spin field (ISF) places an important upper bound on
the maximum attainable polarization of a stored beam [4],
and finding the ISF requires fast and accurate spin tracking.
Other motivations for fast and accurate spin tracking include
the computationally challenging assessment of proposed
storage-ring-based searches for a permanent electric dipole
moment (EDM) in protons and deuterons [5]. Assessing
the sensitivity of such experiments will require long-term
spin-orbit simulations of unprecedented accuracy [6].

We have developed a very accurate and efficient spin-
orbit tracking code, TEASPINK, now built on top of the UAL
framework [7]. Here we present a brief description of that
code and our error analysis, with a particular focus on the
spin integration. As numerical efficiency is an important
consideration for spin tracking codes, we have implemented
all our integrators on a graphics processing unit (GPU). The
embarrassingly parallel nature of spin-orbit tracking (in the
absence of space-charge) makes this type of computation
an ideal fit for the highly parallel architecture of GPUs. This
aspect of our work, along with more in-depth information
about the integrators, will be presented elsewhere [8].
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SPIN INTEGRATION
In this study, we ignore the effects of synchrotron ra-

diation and space-charge forces. We therefore model the
orbital dynamics in an accelerator using a single-particle
Hamiltonian appropriate to the externally applied magnetic
and electric fields of a particle accelerator. For the spin dy-
namics, we treat spin-1⁄2 particles with the spin orientation
described by a unit three vector that obeys the Thomas-BMT
equation [9]:

d ~S/ds = ~Ω× ~S. (1)

Here the precession vector ~Ω is a function of the particle
velocity and the local magnetic and electric fields.

Because we have found that the accuracy of the orbital
data has a significant impact on the accuracy of the spin
tracking, our code is based on first performing very accurate
symplectic integration for the orbital motion [10]. With
orbital data in hand, we then use the Thomas-BMT equation
to integrate the spin motion. The most significant aspect of
this work is that we have found a means of accelerating the
convergence of spin integration.

Piece-wise Constant Spin Precession
A commonly used integration strategy for spin treats the

fields and velocity vectors in ~Ω as constant throughout a
slice of length ∆s. One then integrates Eq. 1 to the form

~S(s+ ∆s) = R(~ω) · ~S(s), (2a)

where R(~ω) denotes the 3×3 matrix that describes rotation
about axis ~ω by angle |~ω|. One approximates this rotation
vector as ∆s times ~Ω. Then to compute the spin rotation
across a whole element, one simply multiplies the contribu-
tions from each slice. For four slices, say, one thus transports
an initial spin ~Si to a final spin ~Sf according to

~Sf = R(~ω4) ·R(~ω3) ·R(~ω2) ·R(~ω1) · ~Si (2b)

There are two sources of errors in the above approach to
spin integration. First, errors in the orbital data feed into the
spin integration via errors in the fields and velocities needed
in ~Ω. Second, treating the rotation axis as piece-wise con-
stant introduces errors that arise from the non-commutativity
of spin rotations around non-parallel axes.

When using drift-kick integrators for orbital motion, the
first source of error usually dominates. Then increasing the
number of orbital slices to improve the orbital accuracy au-
tomatically diminishes the magnitude of the second type
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Figure 1: Absolute error in the computed spin versus number of slices for a proton crossing several different beamline
elements. These graphics show results for a 200 GeV p+ crossing a RHIC IR quad (upper left), a RHIC arc dipole (upper
right), and a 2.1 m, 1.3 T solenoid (lower left). The lower right graphic show the result for a 25 GeV p+ traversing the same
solenoid. The different curves correspond to different methods of integrating the spin; see text for details.

of error. The situation changes when we use more accurate
bend-kick and matrix-kick integrators [10]. These integra-
tors allow us to take such large steps through both dipoles
and quadrupoles that the lack of commutativity between
consecutive spin rotations can now become an issue.

To speed the accumulation of spin rotations across a set of
orbital slices, we use quaternions to represent rotations [11].
Compared to matrix multiplication, this saves a factor of
about two in the required arithmetic operations.

Romberg Quadratures for Spin Precession
The spin precession across a beamline element is not,

in reality, piece-wise constant; rather, within an element
it varies smoothly with s. More significantly, the integra-
tors based on Eq. 2 exhibit second-order convergence. This
quadratic convergence suggests the use of some accelerating
technique to cancel the errors. In particular, we have applied
a Romberg approach [12, 13] to spin integration, and the
improvement is dramatic.

Instead of computing the rotation vectors at the middle
of each slice, we now, for this new approach, compute them
at the edges of each slice. We then accumulate the spin
precession as in Eq. 2. For the first and last edges, however,
we use a half-step; i.e. we replace ∆s by ∆s/2. This is akin
to using the trapezoidal rule for integration. We do this using
N slices, with N a multiple of some power of two.

During the orbital integration, we record ~Ω at the edge
of each slice. Then by keeping every other ~Ω, or every
fourth, etc., we can approximate the net spin precession
using a range of additional step-sizes related to the original

by powers of two. We thus compute a set of net quaternions:

Q(h), Q(h/2), Q(h/22), Q(h/23), . . . .

We then compute the Romberg limit: First define

Q0k = Q(h/2k). (3a)

Then use the rule

Qj+1,k =
4j+1Qj,k −Qj,k−1

4j+1 − 1
(3b)

to construct the Romberg table:

Q00

Q01 Q11

Q02 Q12 Q22

Q03 Q13 Q23 Q33

(3c)

This table may have more or fewer rows than indicated here,
but the number at the bottom right is the Romberg limit of
the initial data given in the first column.

When integrating a well-behaved function over a finite
interval, the trapezoidal rule plus Romberg limit performs
remarkably well with modest computational effort. The effi-
ciency, however, derives from the structure of the error term
seen in the Euler-Maclaurin summation formula [13], and
the manner in which the Romberg table cancels those errors.
Here, on the other hand, we have a product of quaternions,
and hence no a priori reason to suspect that the above will
actually work. We tried it on a lark.
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Figure 2: Accumulated spin error as a function of turn num-
ber, for multi-turn tracking in a RHIC lattice, using different
methods of integration. From top to bottom: the previous
standard, a TEAPOT split with no = 4 (blue), bend-kick
with no = 1 and no Romberg (red), and bend-kick with
no = 1 and two Romberg steps in the IR quads (tan). The
simulated beam had an emittance of 45πmm mrad.

PERFORMANCE OF INTEGRATORS

Single-element Errors
The graphics in Fig. 1 show the spin integration errors

that we computed when tracking a particular particle across
several different beamline elements. In each of those graph-
ics, the blue curve, labelled PWC, corresponds to piece-wise
constant spin integration, where for the orbital motion we
are now using the more accurate bend-kick and matrix kick
integrators. In all cases the slope −2 reveals second-order
convergence for PWC spin integration. The remaining curves
correspond to k Romberg iterations (i.e. Qkk) applied to the
PWC data obtained for the given number of slices. Since we
do not know the result of exact spin integration, we have es-
timated the spin integration error as the absolute difference
between the result ~SN obtained using N slices and what we
considered our “best” result, ~Sbest.

For ~Sbest, in Fig. 1, we have used results obtained using
256 slices and three Romberg iterations. If we instead use
our most finely-sliced PWC result, then small details in these
graphics change, but the overall implication holds—that one
or more iterations of the Romberg procedure can dramati-
cally reduce the errors made by PWC spin integration.

Evolution of Spin Errors
We also examined how spin errors evolve over many

turns in RHIC. In Fig. 2 we use the accumulated spin er-
ror to compare different methods of integration. The upper
curve shows results obtained using the previous standard, a
TEAPOT split with no = 4: four slices for most elements,
but 16 for the strong elements in the interaction regions
(IRs). We obtained the lower two curves using the new in-
tegrators with just one orbital slice for most elements, and
four for those in the IRs. For the middle curve, we used just
the ‘trapezoidal’ rule (Fig. 1’s PWC). For the lower curve,
we computed a Romberg limit using a maximum k of 2.

CONCLUSION
The results shown in Fig. 1 indicate that our method of

applying Romberg quadratures to spin integration can yield
impressive gains in accuracy and speed. When using four
slices to integrate across the quadrupole, we saw that apply-
ing two Romberg iterations yields a four-decade reduction
in the error—to a level that requires some four-hundred
slices using just PWC spin integration. For the sector bend,
we see a less dramatic absolute reduction in the error; but
even there, between 8 and 64 slices, the slope −4 on the
k = 1 curve tells us that one Romberg iteration converts
second-order PWC integration to fourth-order.

Figure 2, which shows results obtained from multi-turn
tracking of RHIC, indicates that the benefits of taking a
Romberg limit apply over a broad range of phase space.

More details of these results, and a broader and more
in-depth set of results, will be presented elsewhere [8].
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