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Abstract
High power accelerator facilities lead to necessity to

consider space charge forces. It is therefore important

to study the space charge dynamics in the corresponding

channels. To represent the space charge forces of the beam

we have developed special software based on some an-

alytical models for space charge distributions. Because

calculations for space charge dynamics become extremely

time consuming, we use a special algorithm for predictor-

corrector method for evaluation scheme for beam map eval-

uation including the space charge forces. This method al-

lows us to evaluate the map along the references trajec-

tory and to create the beam envelope dynamics. The cor-

responding computer codes are realized using CUDA im-

plementation of maps for particle dynamics. Some numer-

ical results for different types of the beam channels are dis-

cussed. The survey of advantages and disadvantages of us-

ing different methods of parallelization and some parallel

approaches will be done.

INTRODUCTION
Space charge effects can be very important for the dy-

namics of intense particle beams, as they repeatedly pass

through nonlinear focusing elements, aiming to maximize

the beam’s luminosity properties in the storage rings of a

high energy accelerator [1]. The evaluation of the space

charge effects on the beam dynamics requires GPU-time

intensive numerical simulations. There are some works

[3, 4], where parallel algorithms are used. The raw compu-

tational power of a GPU dwarfs that of the most powerful

CPU, and the gap is steadily widening. Furthermore, GPUs

have moved away from the traditional fixed-function 3D

graphics pipeline toward a flexible general-purpose com-

putational engine. Today, GPUs can implement many par-

allel algorithms directly using graphics hardware. Well-

suited algorithms that leverage all the underlying computa-

tional horsepower often achieve tremendous speedups [2].
In [5, 6] and [7] the algorithm of PIC-method based on

object-oriented architecture is described. As the alterna-

tive of this method matrix formalism was used. Matrix for-

malism [8, 9] is a high-performance mapping approach for

ODE solving. It allows to present solution of the system in

following form

X =

k∑
i=0

R1i(t)X
[i]
0 , (1)

where R1i are numerical matrices. So this approach can be

easy implement in parallel code. Due to the fact that only
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matrix multiplication and addition are used, GPU program-

ming is especially suitable for this purpose.

There we have two ways for beam dynamics simulation:

• based on particle simulation;

• based on envelope description.

ENVELOPE SIMULATION
Beam dynamics description based on envelope provides

an efficient approach to modeling. Let’s consider the en-

velope simulation in linear case(see Fig. (1)). In nonlin-

ear case the equations are quite difficult, but the concept is

based on linearization by introducing an extended space.

In linear case equation (1) is wrote in following form

X = R ◦X0.

The elliptical envelope can be described by a quadratic

form

X∗AX < 1,

where X∗ means transpose of vector X .

By these equations a new envelope can be obtained:

X∗(R∗AR)X < 1,

where R∗AR is a matrix of new quadratic form.

Figure 1: Envelope simulation.

EQUATIONS FOR THE ENVELOPES
WITH THE SPACE CHARGE

According to the matrix formalism, we compare the evo-

lution operator and the infinite-dimensional matrix

M = (M11 . . .M1k . . .),

with the help of the block-matrices and using
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σ11(t) =

∞∑
l=1

∞∑
k=1

M1l(t | t)σlk
0 (M1k(t | t)),

calculate the root-mean-square matrix of envelopes and

find the current distribution function to calculate own fields

of space charge.

Solution Algorithm
Let T = [t0, t1], and Δt = t1 − t0, f(X, t0) = f0(X) -

the initial value of the set of phase points when t = t0, N -

the order of approximation.

• Step one. Calculate matrices σik
0 , i, k = 1, N by

σik
0 =

∫
η0

f0(X)X [i](X [k])∗dX.

as a form matrix A0 choose (σ11
0 )−1 or σ−1

0 if the ini-

tial set η0 is ellipsoid with the border

X∗
0σ

−1
0 X0 = ε.

Next build approximant ϕ0(κ
2
0) ≈ f0(X0), where

κ2
0 = X∗

0A0X0.

• Step two. Calculate block-matrices

P 1k(Bext, Eext, t) and N1k
1 = P 1k(Bext, Eext, t)

[8, 9].

• Step three. Calculate Eself = E(ϕ0(κ
2
0)) for differ-

ent distribution of the beam (e.g. uniform, normal,

quadratic, etc.).

• Step four. Calculate block-matrices P with space

charge effect:

{P 1k(t)}ij = 1

k1! . . . km!

dkFi(Xj , t)

dxk1
1 . . . dxkm

m

|x1=...=xm=1

.

• Step five. Calculate block-matrices M ik where i ≤
k ≤ N ,

M ik
1 = M ik(t | t0; {N1l

1 }),
l = 1, k,

M ik
2 = M ik(t | t0; {N1l

2 }),
M ik

0 = M ik
1 +M ik

2 ,

• Step six. Calculate block-matrices σik
0

σik
0 =

∞∑
l=i

∞∑
j=k

M il
0 σ

lj
0 (M jk

0 )∗.

• Step seven. Calculate block-matrices - virtual changes

of settings while beam evolution:

σik
1 = ασik

0 + (1− α)σik
0 ,

0 < α < 1. By virtual change we mean changes

of settings that are necessary to build a map. Enve-

lope matrices, functions of distributions, etc., are not

changed.

• Step eight. Check the conditions:

‖ σik
1 − σik

0 ‖c< εik (2)

As (2) can be used different equivalent rules. If the

condition is right, the process is stoped. Otherwise,

σik
0 = σik

1 .

and going the next step.

• Step nine. Looking for ϕ(κ2) for function f(X, t):

ϕ(κ2) ≈ f0(μ
−1
0 ◦X0) = f0(

∞∑
i=1

T 1i
0 X

[i]
0 ).

Assuming ϕ0(κ
2) = ϕ(κ2) return to step three.

Considered algorithm is simplified by using as approxi-

mant funtion that is constant on the ellipsoid and zero out-

side it. That’s why the step three becomes easier to calcu-

late. Step nine is not needed at all and it makes the cal-

culations faster. Moreover, choosing approximant in the

class of polynomials allows us to use pre-computed block-

matrices from special database. So this approach can sig-

nificantly reduce the computations on the step of numerical

simulations.

SIMULATION
We evaluate the effectiveness of using data parallelism to

program GPUs by providing results for a set of compute-

intensive benchmarks. All calculations were performed on

a hybrid cluster of SPbSU (see Fig. (2)) computing center.

Its nodes contain a NVIDIA Tesla S2050 system that was

developed specifically as a GPGPU unit [10]. For our goal

we choose OpenMP technology (see Fig. (3)). The research

have shown that there is no great benefits via parallelization

of computational code for one particle by using GPU. In

Table 1) performance of different parallelization modes are

presented, where

• 1 mult means one parallel section for multiplication;

• 2 mult means two parallel section for multiplication;

• add means one parallel section for addition.

Figure 2: Diagram of comparative performance.

In this case overhead on data sending is significant. On

the other hand matrix formalism allows to process a set of

the initial points, where parallelization is more preferably.
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Figure 3: The workflow.

Let’s introduce a set of initial particle

M = (X1
0X

2
0 . . . X

p
0 ).

In according to the equation (1) the resulting points can

be calculated

M =
k∑

i=0

R1i(t)((X1
0 )

[i](X2
0 )

[i] . . . (Xp
0 )

[i]). (3)

Note that the sizes of matrices in the equation (3) is much

greater than in (1) when a set of initial particles is quite

large.

Table 1: Performance of Different Parallelization, Sec.

1 mult 2 mult add

1 4.77 6.26 4.75

2 5.86 4.77 4.8

3 4.75 4.77 4.76

CONCLUSION
Matrix formalism is a high-performance approach for

beam dynamic modeling. The method can be implemented

in parallel codes on GPU. It allows simulate both long-term

evolution of a set of particles, and evaluating based on en-

velope description.

ACKNOWLEDGMENT
Computations were partly carried out on cluster HPC-

0011654-001 of Saint-Petersburg State University, Faculty

of Applied Mathematics and Control Processes. Special

thanks for my scientific supervisor S. Andrianov.

REFERENCES
[1] Tassos Bountis, Charalampos Skokos, “Space Charge Can

Significantly Affect the Dynamics of Accelerator Maps,”

arXiv:physics/0605084v1, 2006.

[2] D. Luebke, G. Humphreys, “How GPUs Work,” How Things

Work, Computer, February, 2007, pp. 126-130.

[3] M. Giovannozzi, “Space-Charge Sim-

ulation Using Parallel Algorithms,”

http://accelconf.web.cern.ch/AccelConf/e98/PAPERS/

THP04B.PDF, pp. 1189-1191.

[4] S. Andrianov, N. Kulabukhova, V. Ryabusha, “Space-charge

Simulations using Parallel and Distributed Computer Sys-

tems,” MOPWO018, these proceedings.

[5] J.P.Verboncoeur,A.B.Langdon, N.T. Gladd, “An Object-

Oriented Electromagnetic PIC Code,” Computer Physics

Communications 87, 1995,pp.199-211.

[6] Ji Qiang,R.D. Ryne, S. Habib, V. Decyk, “An Object-

Oriented Parrallel Particle-in-Cell Code for Beam Dynam-

ics Simulation in Linear Acceleratitors,” Jornal of Compu-

tational Physics, 163, 2000, pp.434-451.

[7] K.J. Bowers, “Accelerating a Particle-in-Cell Simulation Us-

ing a Hybrid Computing Sort,” Jornal of Computational

Physics, 2001, pp. 393-411.

[8] S. Andrianov, “The Convergence and Accuracy of the Ma-

trix Formalism Approximation,” Proceedings of 11th Interna-

tional Computational Accelerator Physics Conference,2012,

pp.195-197.

[9] A. Ivanov, S. Andrianov, “Matrix formalism for long-term

evolution of charged particle and spin dynamics in electro-

static fields,” Proceedings of 11th International Computa-

tional Accelerator Physics Conference,2012, pp.257-259.

[10] N Kulabukhova, “GPGPU Implementation of Matrix For-

malism for Beam Dynamics Simulation,” Proceedings of

11th International Computational Accelerator Physics Con-

ference,2012, pp.143-145.

MOPWO020 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

926C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques


