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Abstract
The spin dynamics in circular accelerators with fast en-

ergy ramps, or short storage times of up to some seconds,

can be investigated with spin tracking appropriately. Ad-

ditionally, the spin motion of lepton beams is affected sig-

nificantly by synchrotron radiation. Hence, spin dynamics

simulations require spin tracking with a large number of

particles to compute the beam polarization and thus take

considerably long computing times. Therefore, high effi-

ciency is crucial to perform systematic polarization studies.

The new simulation tool POLE provides the ability to

balance accuracy against computing time. To that end, ad-

justable approximations of magnetic fields and synchrotron

radiation are implemented. POLE is accessible for a wide

range of lepton storage rings because it uses the common

MAD-X lattice files and the corresponding particle track-

ing results.

MOTIVATION
The spin dynamics in circular accelerators is determined

by the periodic sequence of the magnets. If the spins pre-

cess in phase with any component of the magnetic field dis-

tribution, a depolarizing resonance is excited. For electron

beams synchrotron radiation causes incoherent spin motion

and thus each crossing of a resonance leads to depolariza-

tion. Therefore, the investigation and correction of depo-

larizing resonances is a major challenge, when dealing with

polarized electrons in accelerator rings. Hence, systematic

simulations request easy access to lattice and beam optics

modifications and high computing efficiency. An appropri-

ate spin dynamics simulation tool for fast energy ramps and

storage rings with short storage times is not available. For

this reason, POLE is developed.

Its results can be tested experimentally at the in-house

ELSA stretcher ring accelerating polarized electrons to typ-

ically 2.4 GeV during a fast 4 GeV/s energy ramp and ap-

plying sophisticated methods for the correction of depolar-

izing resonances [1].

THE BASIC CONCEPT OF POLE
The Thomas-BMT equation [3] describes the spin mo-

tion of a relativistic particle in electromagnetic fields. Solv-

ing it numerically is a common approach for the computa-

tion of spin dynamics in accelerators and is also used in the

case of POLE. For this purpose we applied a Runge-Kutta

algorithm with an adaptive step size. Neglecting electric

fields, the Thomas-BMT equation can be written as
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d

dt
�S ≈ c · �S ×

[
(1 + aγ) �B′⊥ + (1 + a) �B′‖

]
(1)

with the time dependent spin vector �S(t), the gyromagnetic

anomaly a = (gs − 2)/2 and the energy normalized time

dependent magnetic field �B′(t). Here, the energy depen-

dence of the magnetic field is separated from �B′ and given

by the Lorentz factor γ(t).
An important consequence of synchrotron radiation are

depolarization effects caused by incoherent spin motion.

Their simulation requires the computation of many spin

vectors, which are finally averaged to derive the polariza-

tion vector. Some spins can be computed parallel on multi-

core processors, but the most significant reduction of com-

puting time is achieved by confining the magnetic fields

B′(t). We have shown in [4] that this can be done by a

spectral analysis of the field distribution. It allows for filter-

ing the magnetic fields in the frequency domain and yields

a smoother shape. Thus the step size during the integration

of equation (1) is enlarged and can significantly exceed the

length of a magnet.

MAGNETIC FIELD APPROXIMATIONS
The magnetic fields in the accelerator are decisive for

the spin motion. They determine the strengths of depo-

larizing resonances. POLE computes the field distribution

based on a common MAD-X lattice [2]. For this purpose,

the MAD-X “Twiss Module” provides the magnet posi-

tions and strengths as well as the closed orbit. Of these,

a field distribution �B′(t) is derived for one revolution on

the closed orbit. A Fourier transformation for each axis

yields magnetic field spectra, consisting of the harmonics

of the revolution frequency ωrev. Its amplitudes and phases

are used to approximate B′(t) as a Fourier series:

B′(t) ≈
imax∑
i=0

Ai cos(ωit+ φi) with ωi = i · ωrev . (2)

This approximation is then applied to equation (1) for each

axis. That way, the frequency components of the field dis-

tribution can be filtered by selecting any ωi for equation

(2).

Figure 1 shows the effect of such a filter on the crossing

of the integer resonance aγ = 3 in the ELSA stretcher ring.

In this example, the computed vertical degree of polariza-

tion after crossing the resonance is plotted as a function of

the maximum frequency ωmax = imax · ωrev of the field

distribution. The computed polarization converges with in-

creasing ωmax, so this approximation of the field distribu-

tion is reasonable.
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Figure 1: Simulated vertical polarization after crossing of

integer resonance aγ = 3 as a function of the maximum

considered frequency of the magnetic field spectrum
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Figure 2: Simulated vertical polarization with synchrotron

side-bands during crossing of integer resonance aγ = 6

Integer resonances can be modeled by this field spec-

trum, generated from a one revolution field distribution. In-

trinsic resonances are caused by horizontal fields in phase

with the tune. Thus, they are affected by the single particle

trajectories and the relevant frequencies are especially not

revolution harmonics. To implement intrinsic resonances,

a representative particle on the emittance ellipse is tracked

with the MAD-X “ptc track Module”. Tracking e.g. thou-

sand turns results in a frequency resolution of ωrev/1000,

so that the trajectory is closed in a good approximation

if the tune is set with three decimal places. Computing

the corresponding spectra with POLE still takes less than

30 s including the MAD-X execution. Many frequencies

in-between the revolution harmonics have negligible con-

tributions. Hence, the large number of frequencies can be

reduced by filters effectively.

RESONANCE CROSSING AND
SYNCHROTRON RADIATION

As described above, the particle’s energy is separated

from the magnetic fields B′ in equation (1). Therefore,

an energy ramp can be applied in the spin dynamics sim-

ulation with POLE by an arbitrary function as the Lorentz

factor γ(t) = γramp(t). We use additional terms in γ(t) to

approximate the longitudinal motion of the individual parti-
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Figure 3: Simulation of spin diffusion during crossing of

integer resonance aγ = 7

cles. This approach is debatable for the simulation of cross-

ing of intrinsic resonances, since they are determined by the

single particle trajectories and hence, the coupling of lon-

gitudinal motion with the transversal trajectories might not

be negligible. For integer resonances (and aside from reso-

nances), we achieve promising results with simple models

for γ(t). Several models were tested on the expected influ-

ence on spin motion, in order to get a computing time as

short as possible. They implement synchrotron oscillations

as well as synchrotron radiation.

The synchrotron oscillation can be modeled by

γi(t) = γramp(t) +Ai cos(ωit+ φi) (3)

for particle i, with Ai corresponding to the beam’s en-

ergy width and ωi appropriately distributed around its syn-

chrotron frequency. Thus, the individual γi reproduce the

energy distribution of the beam. Another model includ-

ing several superposed oscillations for each particle was al-

ready studied [4] before developing POLE, but finally lead

to very similar results. In Figure 2, a simulation of 100

spins crossing the integer resonance aγ = 6 with 4 GeV/s

in the ELSA stretcher ring is shown. The vertical degree of

polarization Pz and the vertical component of three exem-

plary spins Si is plotted. Pz is decreased at the resonance

energy. Additionally, it is decreased before and after the

main resonance, due to the energy oscillation around the

reference energy. These are the synchrotron side-bands of

the resonance. For this reason, a complete spin-flip does

not occur, since P is partially tilted in the horizontal plane

and Pz is reduced.

Furthermore, synchrotron radiation can be included by

random modulation of the phases φi(t) in equation (3),

modeling stochastic energy changes of each particle. As

a consequence, there is no fixed phase relation between the

precessions of any two spins and therefore, any polarization

component perpendicular to the precession axis vanishes

with time. This spin diffusion can be observed in Figure 3.

It shows a simulation of 1000 spins crossing an isolated

resonance at aγ = 7 with 4 GeV/s. A horizontal polariza-

tion Px occurs because of the increasing opening angle of

the precession cone at the resonance. It vanishes after the
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Figure 4: First results for resonance strengths in the ELSA stretcher ring predicted with POLE based on a MAD-X particle

tracking for emittance 500 nmrad, vertical tune Qz = 4.431 and periodicity P = 2

resonance crossing and thus also the absolute value of po-

larization |P | is reduced. This makes it impossible for an

electron beam to restore polarization once tilted out of the

vertical direction.

Accordingly, POLE enables the computation of depolar-

ization effects with a computing time in the order of min-

utes. However, there is a strong influence of the model

parameters, such as amplitude and frequency of the phase

modulations. Also limitations of the approach for intrinsic

resonances have to be studied.

RESONANCE STRENGTHS
Recently, we implemented an additional method for the

analysis of depolarizing resonances, which does not need

any spin tracking and therefore has especially low com-

puting time. The strengths of depolarizing resonances is

calculated from the magnetic field distribution and can be

used to compare and weight resonances for certain lattices

or parameter sets.

The resonance strength is proportional to the amplitude

of the horizontal field component in phase with the spin

precession, which can be parametrized by the precession

angle θ. This is not equivalent to the time dependent field

B′(t), since the precession is interrupted in-between the

dipole magnets. Therefore, a resonance strength can not be

identified as a single frequency component in the spectra

described above, which are computed from a field distri-

bution parametrized by the time t. This is also indicated in

Figure 1, where otherwise only one frequency (e.g. i = aγ)

would affect the polarization at all. For this reason, the

field distribution B′
x(t) must be transformed from the rest

frame of the particle (t) into the rest frame of the spin (θ)

to enable the computation of resonance strengths. To that

end, the integral kicks (in mrad) for each magnet are calcu-

lated and summed up for all magnets corresponding to the

same θ. Afterwards, the resulting field distribution B′
x(θ)

is Fourier transformed. Its frequencies are the equivalent of

the precession frequencies and thus correspond to the spin

tune aγ at which the resonance is excited.

Figure 4 shows a first result of the resonance strengths in

the ELSA stretcher ring computed with POLE up to aγ = 7.

All first order intrinsic resonances due to the vertical tune

occur, as well as all integer resonances, which are caused

by random torsion1 of the dipoles applied in MAD-X.

The resonance strengths enable the comparison of depo-

larizing effects for different beam optics, closed orbit dis-

tortions or individual magnet settings. Their computation

with POLE is part of the automatic field calculation based

on a MAD-X lattice file described above. Therefore, POLE

can also be used, e.g. for the analysis of resonance correc-

tion schemes or the design of new accelerators.

CONCLUSION
Recent results of POLE are in good accordance with

comprehension. Besides, its development is an ongoing

process. One essential aspect will be the comparison of

simulation results with polarization measurements that can

be performed at ELSA with various energies and ramp-

ing speeds, using beam manipulation tools, e.g. tune-jump

quadrupoles and fast corrector magnets [5]. POLE offers an

easy access to efficiently simulate spin dynamics and thus

can also be a valuable tool for other facilities.
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1Rotation around beam axis, gaussian distributed around zero rotation

with 1 mrad standard deviation.
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