Paper |
Title |
Other Keywords |
Page |
MOPWA070 |
Beam Position Monitor within the Cornell Energy Recovery Linac Cavity Assembly |
HOM, coupling, pick-up, cavity |
840 |
|
- M.G. Billing, M. Liepe, V.D. Shemelin, N.R.A. Valles
CLASSE, Ithaca, New York, USA
|
|
|
In an energy recovery Linac (ERL) the low energy beam is very sensitive to deflections due to the RF fields as it passes through the accelerator cavities. Therefore, to avoid the possible effects of beam breakup, it will be important to determine the optimum transverse position for the beam within the first several sets of cavity cells in the cryostat assembly and to maintain this position over long periods. As a result a beam position monitor (BPM) has been designed to be located between the higher-order modes (HOM) loads and the seven-cell RF structures. This BPM’s design reduces the coupling of RF power from the fundamental mode and HOMs into the BPM, while maintaining acceptable position sensitivity and resolution. We analyzed the coupling of the probe to the HOMs of realistically shaped cavities by generating geometries for hundreds of cavities having small shape variations from the nominal dimensions consistent with present machining tolerances, and solved for their monopole and dipole spectra. Our results show that the peak, dissipated power within BPM cables, which pass through the cryostat, is well within the permissible levels.
|
|
|
WEPFI055 |
Experience on Fabrication and Assembly of the First Clic Two-Beam Module Prototype |
vacuum, alignment, quadrupole, instrumentation |
2815 |
|
- D. Gudkov, S. Lebet, G. Riddone, F. Rossi
CERN, Geneva, Switzerland
- A. Samoshkin
JINR, Dubna, Moscow Region, Russia
|
|
|
The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies for the part manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison of several technical solutions adopted during the realization. The description of the module assembly and quality control measurements are also recalled.
|
|
|
WEPFI056 |
Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules |
alignment, controls, linac, collider |
2818 |
|
- F. Rossi, R. Mondello, G. Riddone
CERN, Geneva, Switzerland
- D. Gudkov, A. Samoshkin
JINR, Dubna, Moscow Region, Russia
- I. Kossyvakis
National Technical University of Athens, Zografou, Greece
- K. Österberg
HIP, University of Helsinki, Finland
|
|
|
The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability of the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules have been assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems will be installed in the dedicated laboratory. Air temperature will be varied from 20 to 40 °C, while air flow rate will be regulated up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. This test program will allow for better understanding the behaviour of CLIC modules and the results will be propagated back to both numerical modelling and engineering design.
|
|
|
THPWA048 |
New Generation X-band Linacs for Medical and Industrial Appplications |
linac, electron, radiation, beam-losses |
3741 |
|
- A.V. Mishin, S. Proskin
RMX, North Andover, USA
|
|
|
The proposed designs of the new X-band linear accelerators for industrial and medical applications are based on a well-known side-coupled RF structure. The immediate applications envisioned for the new linear accelerators are security screening and intraoperative radiotherapy (IORT). The new design has promising features and presents cost reduction potential for electron beam and X-ray systems used in medical, industrial, and security screening applications.
|
|
|