Author: Yu, T.-C.
Paper Title Page
TUODB203 Dual Chip in Single Module Solid-State Power Amplifier Design for Compact Transmitter Architecture 1158
 
  • T.-C. Yu, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, Z.L. Liu, C.H. Lo, M.H. Tsai, Ch. Wang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  At pre­sent, the high power solid-state tech­nique trans­mit­ter de­sign are com­posed of hun­dreds par­al­lel com­bined sin­gle chip for hun­dreds Watts power mod­ules to achieve enough out­put power. Al­though the large num­bers can bring high re­dun­dancy dur­ing sys­tem op­er­a­tion, the power hun­gry of next gen­er­a­tion RF sys­tem of ac­cel­er­a­tor would need much more mod­ules to reach its power re­quire­ment. Huge amount of power mod­ules would bring the com­plex­ity and dif­fi­culty in power com­bin­ing, sys­tem con­struc­tion, man­age­ment and main­te­nance. To over­come this prob­lem, up­grad­ing the power level of a sin­gle mod­ule could be the so­lu­tion. Be­sides de­pend­ing on the power level grow­ing with tech­nol­ogy ad­vance­ment in semi­con­duc­tor in­dus­try, a cir­cuit level so­lu­tion to com­bine dual chip in ad­vance in a sin­gle PCB board is pro­posed to pro­duce twice power as sin­gle chip. Such fea­si­ble so­lu­tion can over­come the over-com­plex­ity of fu­ture sev­eral-hun­dreds kW solid-state trans­mit­ter de­sign.  
slides icon Slides TUODB203 [2.337 MB]  
 
WEPFI060 Planar Balun Design with Advanced Heat Dissipation Structure for kW Level Solid-state Amplifier Module Development 2830
 
  • T.-C. Yu, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, Z.L. Liu, C.H. Lo, M.H. Tsai, Ch. Wang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  The power level of solid-state am­pli­fier is con­tin­u­ously grow­ing for ad­vanced ac­cel­er­a­tor ap­pli­ca­tion as the RF power source. Huge amount of solid-state power am­pli­fier (SSPA) mod­ules can con­tribute sev­eral hun­dreds of kW RF power with high re­dun­dancy and re­li­a­bil­ity. How­ever, with the in­creas­ing de­sire of RF power of sin­gle RF sta­tion, too much power mod­ules would ad­versely cause larger area oc­cu­pa­tion and higher main­te­nance cost and com­plex­ity. There­fore, with the ad­vance­ment of the RF power on sin­gle SSPA, the over­all sys­tem de­sign and con­fig­u­ra­tion would be­come much sim­ple and com­pact. How­ever, the in­creas­ing RF of sin­gle SSPA would also bring the ther­mal prob­lem at its chip as well as the out­put power com­bin­ing balun. In this paper, kW range SSPA is de­vel­oped with the novel pla­nar balun struc­ture with good ther­mal ex­pan­sion prop­erty. With such new pla­nar balun de­sign, the SSPA can op­er­ate sta­bly with above 1kW out­put RF power.  
 
WEPFI061 Petra Cavity Vacuum RF Condition with Field Balance Mechanism for TPS Storage Ring in NSRRC 2833
 
  • T.-C. Yu, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, Z.L. Liu, C.H. Lo, M.H. Tsai, Ch. Wang, T.-T. Yang, M.-S. Yeh
    NSRRC, Hsinchu, Taiwan
 
  In the first stage com­mis­sion­ing of TPS (Tai­wan Pho­ton source) stor­age ring in NSRRC, two room tem­per­a­ture Petra cav­i­ties will be used. At this com­mis­sion stage, 100mA with 950keV beam loss is es­ti­mated to have 47.5kW beam loss for each cav­ity. In the mean­while, the cav­ity loss at the spec­i­fied 1.2MV of each cav­ity will be about 50kW. There­fore, cou­pling co­ef­fi­cient of 2 is re­quired. How­ever, the ini­tial de­sign spec­i­fi­ca­tion of Petra cav­ity has only beta of about 1.7. Hence, the mod­i­fi­ca­tion of the input cou­pler is done with the en­hance­ment of its beta as well as ad­vanced water cool­ing for some heat point. Be­sides, due to the two-tuner sys­tem of Petra cav­ity, spe­cial field-bal­ance tuner con­trol sys­tem is also de­vel­oped. In RF con­di­tion for bet­ter vac­uum up to 1.4MV, some mod­i­fi­ca­tion of the tuner me­chan­i­cal struc­ture is also done to reach high vac­uum con­di­tion (lower than 5*10-9 Torr) for stor­age ring re­quire­ment.  
 
THPEA053 Data Acquisition and Monitoring for TPS SRF Module Horizontal Test 3264
 
  • Y.-H. Lin, L.-H. Chang, M.H. Chang, L.J. Chen, F.-T. Chung, M.-C. Lin, Z.L. Liu, C.H. Lo, M.H. Tsai, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
  • M.H. Tsai
    NTUT, Taiwan
 
  Three KEKB-type sin­gle-cell SRF mod­ules were shipped to NSRRC be­fore the end of 2012. The hor­i­zon­tal test of the first KEKB-type SRF mod­ule has been al­ready fin­ished in Jan­u­ary of 2013. While the hor­i­zon­tal tests for the next two SRF mod­ule will be com­pleted in May and Au­gust of this year. This ar­ti­cle in­tro­duces the data ac­qui­si­tion and mon­i­tor­ing sys­tems dur­ing the SRF hor­i­zon­tal test in NSRRC.  
 
THPME035 The Electronic System Design and Realization for First Set 500 MHz KEKB SRF Module High Power Test 3588
 
  • F.-T. Chung, L.-H. Chang, M.H. Chang, L.J. Chen, M.-C. Lin, Y.-H. Lin, Z.L. Liu, C.H. Lo, M.H. Tsai, Ch. Wang, T.-T. Yang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  This ar­ti­cle re­ports the home-made elec­tron­ics cir­cuits for read­ing the var­i­ous elec­tron­ics sig­nals which can be used for site ac­cep­tance of su­per­con­duct­ing res­o­nant cav­ity. The ad­just­ment of pa­ra­me­ters dur­ing 1st SRF high power ac­cep­tance can also be used for the up­date of the 2nd elec­tron­ics. The mod­u­lar elec­tron­ics sys­tem will pro­vide the ad­van­tages of fast re­pair, prepar­ing spare parts eas­ily, short in­stall time and flex­i­ble ad­just­ment. The hard­ware whole elec­tron­ics sys­tem is mainly de­signed by CPLD, PLC and Dis­play me­ters. The Mil­i­tary Stan­dard con­nec­tors are used for sig­nals con­nec­tion. There are al­ways junc­tion boxes for sig­nal trans­mis­sion test and con­ve­nient sig­nal jump­ing for en­sur­ing the cor­rect sig­nal source. In safety ac­tion, there are Fast In­ter­lock Sum (0-10us) and slow ready chain (50ms-150ms). The com­plete sys­tem re­al­izes the real time mon­i­tor and pro­tec­tion of su­per­con­duct­ing res­o­nant cav­ity.