Author: Ludwig, F.
Paper Title Page
WEPME009 Recent Developments of the European XFEL LLRF System 2941
 
  • Ch. Schmidt, G. Ayvazyan, V. Ayvazyan, J. Branlard, Ł. Butkowski, M.K. Grecki, M. Hoffmann, T. Jeżyński, F. Ludwig, U. Mavrič, S. Pfeiffer, H. Schlarb, H.C. Weddig, B.Y. Yang
    DESY, Hamburg, Germany
  • P. Barmuta, S. Bou Habib, K. Czuba, M. Grzegrzółka, E. Janas, J. Piekarski, I. Rutkowski, D. Sikora, Ł. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • W. Cichalewski, K. Gnidzińska, W. Jałmużna, D.R. Makowski, A. Mielczarek, A. Napieralski, P. Perek, A. Piotrowski, T. Pożniak, K.P. Przygoda
    TUL-DMCS, Łódź, Poland
  • S. Korolczuk, I.M. Kudla, J. Szewiński
    NCBJ, Świerk/Otwock, Poland
  • K. Oliwa, W. Wierba
    IFJ-PAN, Kraków, Poland
 
  The Eu­ro­pean XFEL is com­prised of more than 800 TESLA-type su­per-con­duct­ing ac­cel­er­a­tor cav­i­ties which are dri­ven by 25 high-power multi-beam kly­strons. For re­li­able, re­pro­ducible and main­tain­able op­er­a­tion of linac, the LLRF sys­tem will process more than 3000 RF chan­nels. Be­side the large num­ber of RF chan­nels to be processed, sta­ble FEL op­er­a­tion de­mands field sta­bil­ity bet­ter than 0.010deg in phase and 0.01% in am­pli­tude. To cope with these chal­lenges the LLRF sys­tem is de­vel­oped on MTCA.4 plat­form. In this paper, we will give an up­date of the lat­est elec­tron­ics de­vel­op­ments, ad­vances in the feed­back con­troller al­go­rithm and mea­sure­ment re­sults at FLASH.  
 
WEPME035 Overview of the RF Synchronization System for the European XFEL 3001
 
  • K. Czuba, D. Sikora, Ł. Zembala
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • J. Branlard, F. Ludwig, H. Schlarb, H.C. Weddig
    DESY, Hamburg, Germany
 
  One of the most im­por­tant re­quire­ments for the Eu­ro­pean XFEL RF sys­tem is to as­sure a very pre­cise RF field sta­bil­ity within the ac­cel­er­at­ing cav­i­ties. The re­quired am­pli­tude and phase sta­bil­ity equals re­spec­tively dA/A <3·10-5, dphi<0.01 deg @ 1.3GHz in the in­jec­tor and dA/A<10-3, dphi <0.1 deg @1.3GHz in the main LINAC sec­tion. Ful­fill­ing such re­quire­ments for the 3.4 km long fa­cil­ity is a very chal­leng­ing task. Thou­sands of elec­tronic and RF de­vices must be pre­cisely phase syn­chro­nized by means of har­monic RF sig­nals. We de­scribe the pro­posed ar­chi­tec­ture of the RF Mas­ter Os­cil­la­tor and the Phase Ref­er­ence Dis­tri­b­u­tion Sys­tem de­signed to as­sure high pre­ci­sion and re­li­a­bil­ity. A sys­tem of RF cable based in­ter­fer­om­e­ters sup­ported by fem­tosec­ond-sta­ble op­ti­cal links will be used to dis­trib­ute RF ref­er­ence sig­nals with re­quired short and long term phase sta­bil­ity. We also pre­sent test re­sults of pro­to­type de­vices per­formed to val­i­date our con­cept.  
 
THPWA003 Novel Crate Standard MTCA.4 for Industry and Research 3633
 
  • T. Walter, F. Ludwig, K. Rehlich, H. Schlarb
    DESY, Hamburg, Germany
 
  Funding: This project is funded by the Helmholtz Association (Helmholtz Validation Fund HVF-0016).
MTCA.4 is a novel elec­tronic stan­dard de­rived from the Telecom­mu­ni­ca­tion Com­put­ing Ar­chi­tec­ture (TCA) and cham­pi­oned by the xTCA for physics group, a net­work of physics re­search in­sti­tutes and elec­tron­ics man­u­fac­tur­ers. MTCA.4 was re­leased as an of­fi­cial stan­dard by the PCI In­dus­trial Man­u­fac­tur­ers Group (PICMG) in 2011. Al­though the stan­dard is orig­i­nally physics-dri­ven, it holds promise for ap­pli­ca­tions in many other fields with equally chal­leng­ing re­quire­ments. With sub­stan­tial fund­ing from the Helmholtz As­so­ci­a­tion for a two-year val­i­da­tion pro­ject, DESY cur­rently de­vel­ops novel, fully MTCA.4-com­pli­ant com­po­nents to lower the bar­ri­ers to adop­tion in a wide range of in­dus­trial and re­search use sce­nar­ios. Core ac­tiv­i­ties of the pro­ject are: re­fine­ment, test and qual­i­fi­ca­tion of ex­ist­ing com­po­nents; mar­ket re­search, mar­ket ed­u­ca­tion (web in­for­ma­tion ser­vices, work­shops); co­or­di­nated de­vel­op­ment of miss­ing MTCA.4 com­po­nents; fur­ther ad­vance­ment of the stan­dard be­yond the cur­rent PICMG spec­i­fi­ca­tion; in­ves­ti­ga­tion of mea­sures to coun­ter­act elec­tro-mag­netic in­ter­fer­ences and in­com­pat­i­bil­i­ties; train­ing, sup­port and con­sul­tancy. This paper sum­ma­rizes in­ter­me­di­ate re­sults and lessons learned at pro­ject half-time.