Author: Liepe, M.
Paper Title Page
MOPWA070 Beam Position Monitor within the Cornell Energy Recovery Linac Cavity Assembly 840
 
  • M.G. Billing, M. Liepe, V.D. Shemelin, N.R.A. Valles
    CLASSE, Ithaca, New York, USA
 
  In an en­ergy re­cov­ery Linac (ERL) the low en­ergy beam is very sen­si­tive to de­flec­tions due to the RF fields as it passes through the ac­cel­er­a­tor cav­i­ties. There­fore, to avoid the pos­si­ble ef­fects of beam breakup, it will be im­por­tant to de­ter­mine the op­ti­mum trans­verse po­si­tion for the beam within the first sev­eral sets of cav­ity cells in the cryo­stat as­sem­bly and to main­tain this po­si­tion over long pe­ri­ods. As a re­sult a beam po­si­tion mon­i­tor (BPM) has been de­signed to be lo­cated be­tween the higher-or­der modes (HOM) loads and the seven-cell RF struc­tures. This BPM’s de­sign re­duces the cou­pling of RF power from the fun­da­men­tal mode and HOMs into the BPM, while main­tain­ing ac­cept­able po­si­tion sen­si­tiv­ity and res­o­lu­tion. We an­a­lyzed the cou­pling of the probe to the HOMs of re­al­is­ti­cally shaped cav­i­ties by gen­er­at­ing geome­tries for hun­dreds of cav­i­ties hav­ing small shape vari­a­tions from the nom­i­nal di­men­sions con­sis­tent with pre­sent ma­chin­ing tol­er­ances, and solved for their mono­pole and di­pole spec­tra. Our re­sults show that the peak, dis­si­pated power within BPM ca­bles, which pass through the cryo­stat, is well within the per­mis­si­ble lev­els.  
 
WEPWO059 Cornell's HOM Beamline Absorbers 2441
 
  • R. Eichhorn, J.V. Conway, Y. He, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, J. Sears, V.D. Shemelin, N.R.A. Valles
    CLASSE, Ithaca, New York, USA
 
  The pro­posed en­ergy re­cov­ery linac at Cor­nell aims for high beam cur­rents and short bunch lengths, the com­bi­na­tion of which re­quires ef­fi­cient damp­ing of the higher order modes (HOMs) being pre­sent in the su­per­con­duct­ing cav­i­ties. Nu­mer­i­cal sim­u­la­tions show that the ex­pected HOM power could be as high as 200 W per cav­ity with fre­quen­cies rang­ing to 40 GHz. Con­se­quently, a beam line ab­sorber ap­proach was cho­sen. We will re­view the de­sign, re­port on first re­sults from a pro­to­type and dis­cuss fur­ther im­prove­ments.  
 
WEPWO060 The CW Linac Cryo-module for Cornell’s ERL 2444
 
  • R. Eichhorn, Y. He, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cor­nell Uni­ver­sity has pro­posed an en­ergy-re­cov­ery linac (ERL) based syn­chro­tron-light fa­cil­ity which can pro­vide greatly im­proved X-ray beams due to the high elec­tron-beam qual­ity that is avail­able from a linac. As part of the phase 1 R&D pro­gram, crit­i­cal chal­lenges in the de­sign were ad­dressed, one of them being a full linac cryo-mod­ule. It houses 6 su­per­con­duct­ing cav­i­ties- op­er­ated at 1.8 K in cw mode- HOM ab­sorbers and a mag­net/ BPM sec­tion. We will pre­sent the de­sign being fi­nal­ized re­cently and re­port on the fab­ri­ca­tion sta­tus that started in late 2012.  
 
WEPWO061 Readiness for the Cornell ERL 2447
 
  • G.H. Hoffstaetter, A.C. Bartnik, I.V. Bazarov, D.H. Bilderback, M.G. Billing, J.D. Brock, J.A. Crittenden, L. Cultrera, D.S. Dale, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, R. Eichhorn, K. Finkelstein, E. Fontes, M.J. Forster, S.J. Full, F. Furuta, D. Gonnella, S.W. Gray, S.M. Gruner, C.M. Gulliford, D.L. Hartill, Y. He, R.G. Helmke, K.M.V. Ho, R.P.K. Kaplan, S.S. Karkare, V.O. Kostroun, H. Lee, Y. Li, M. Liepe, X. Liu, J.M. Maxson, C.E. Mayes, A.A. Mikhailichenko, H. Padamsee, J.R. Patterson, S.B. Peck, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, J. Sears, V.D. Shemelin, D.M. Smilgies, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, A.R. Woll, Y. Xie, Z. Zhao
    CLASSE, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731 and NY State
En­ergy-Re­cov­ery Linacs (ERLs) are pro­posed as dri­vers for hard x-ray sources be­cause of their abil­ity to pro­duce elec­tron bunches with small, flex­i­ble cross sec­tions and short lengths at high rep­e­ti­tion rates. Cor­nell Uni­ver­sity has pi­o­neered the de­sign and hard­ware for ERL light­sources. This prepara­tory re­search for ERL-light­source con­struc­tion will be dis­cussed. Im­por­tant mile­stones have been achieved in Cor­nell's pro­to­type ERL in­jec­tor, in­clud­ing the pro­duc­tion of a pro­to­type SRF cav­ity that ex­ceeds de­sign spec­i­fi­ca­tions, the reg­u­lar pro­duc­tion of long-lived and low emit­tance cath­odes, the ac­cel­er­a­tion of ul­tra-low emit­tance bunches, and the world-record of 65 mA cur­rent from a pho­toe­mis­sion DC gun. We be­lieve that demon­stra­tion of the prac­ti­cal fea­si­bil­ity of these tech­nolo­gies have pro­gressed suf­fi­ciently to allow the con­struc­tion of an ERL-based light­source like that de­scribed in [erl.​chess.​cornell.​edu/​PDDR].
 
 
WEPWO068 Cornell ERL Main Linac 7-cell Cavity Performance in Horizontal Test Cryomodule Qualifications 2459
 
  • N.R.A. Valles, R. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF DMR-0807731
Cor­nell has re­cently finished pro­duc­ing and test­ing the first pro­to­type 7-cell main linac cav­ity for the Cor­nell En­ergy Re­cov­ery Linac, and com­pleted the pro­to­type cav­ity qual­i­fi­ca­tion pro­gram. This paper pre­sents qual­ity fac­tor re­sults from the hor­i­zon­tal test cry­omod­ule (HTC) mea­sure­ments, from the HTC-1 through HTC-3 ex­per­i­ments, reach­ing Q's up to 6 x 1010 at 1.6 K. We in­ves­ti­gate the ef­fect of ther­mal cy­cling on cav­ity qual­ity fac­tor and show that high qual­ity fac­tors can be pre­served from ini­tial mount­ing to fully out­fit­ting the cav­ity with side-mounted input cou­pler and beam line ab­sorbers. We also dis­cuss the pro­duc­tion of six ad­di­tional main-linac cav­i­ties as we progress to­ward con­struct­ing a full 6-cav­ity cry­omod­ule.
 
 
WEPWO069 HOM Studies of the Cornell ERL Main Linac Cavity: HTC-1 Through HTC-3 2462
 
  • N.R.A. Valles, R. Eichhorn, G.H. Hoffstaetter, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
The Cor­nell en­ergy re­cov­ery linac is de­signed to run a high en­ergy (5 GeV), high cur­rent (100 mA), very low emit­tance beam (30 pm at 77 pC bunch charge). A major chal­lenge to run­ning such a large cur­rent con­tin­u­ously through the ma­chine is the ef­fect of strong higher-or­der modes(HOMs) that can lead to beam breakup. This paper pre­sents the re­sults of HOM stud­ies for the pro­to­type 7-cell cav­ity in­stalled in a hor­i­zon­tal test cry­omod­ule (HTC) from ini­tial RF test, to being fully out­fit­ted with side-mounted input cou­pler and beam line ab­sorbers. We com­pare the sim­u­lated re­sults of the op­ti­mized cav­ity geom­e­try with mea­sure­ments from all three HTC ex­per­i­ments.
 
 
WEPWO071 Quench and High Field Q-SLOP Studies using a Single Cell Cavity with Artificial Pits 2465
 
  • Y. Xie, G.H. Hoffstaetter, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Sur­face de­fects such as pits have been iden­ti­fied as some of the main sources of lim­i­ta­tions of srf cav­ity per­for­mance. A sin­gle cell cav­ity was made with 30 ar­ti­fi­cial pits in the high mag­netic field re­gion to gain new in­sight in how pits limit the cav­ity per­for­mance. The test of the pit cav­ity showed clear ev­i­dence that the edges of two of the largest ra­dius pits tran­si­tioned into the nor­mal con­duct­ing state at field just below the quench field of the cav­ity, and that the quench was in­deed in­duced by these two pits. In­sights about quench and non-lin­ear rf re­sis­tances will be pre­sented.  
 
WEPFI076 Experience with a 5 kW, 1.3 GHz Solid State Amplifier 2869
 
  • K.M.V. Ho, R. Eichhorn, D.L. Hartill, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  This study de­scribes the ex­pe­ri­ence with and per­for­mance of a com­mer­cially avail­able 1.3 GHz 5kW Solid State Am­pli­fier in var­i­ous ex­per­i­ments at Cor­nell Uni­ver­sity. This paper fo­cuses on sev­eral key fac­tors in test­ing the per­for­mance of the am­pli­fier. Among those are phase and am­pli­tude sta­bil­ity, gain lin­ear­ity, and phase shift vs. power. High power am­pli­fiers are usu­ally built with mul­ti­ple RF power mod­ules and the in­di­vid­ual out­put sig­nals are then com­bined in a power com­biner. There­fore, the phases of the in­di­vid­ual RF out­put power sig­nals have to be ad­justed within tight tol­er­ances. The rel­a­tive phases can be af­fected by dif­fer­ent lengths ca­bles and also af­fect the over­all gain per­for­mance of the am­pli­fier.