Author: Hulsart, R.L.
Paper Title Page
TUYB103 Status and Plans for the Polarized Hadron Collider at RHIC 1106
 
  • M. Bai, L. A. Ahrens, E.C. Aschenauer, G. Atoian, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, O. Eyser, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, A.I. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As the world’s only high en­ergy po­lar­ized pro­ton col­lider, the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) at Brookhaven Na­tional Lab­o­ra­tory (BNL) has been pro­vid­ing col­li­sions of po­lar­ized pro­ton beams at beam en­ergy from 100~GeV to 255~GeV for the past decade to ex­plore the pro­ton spin struc­ture as well as other spin de­pen­dent mea­sure­ments. With the help of two Siber­ian Snakes per ac­cel­er­a­tor plus out­stand­ing beam con­trol, beam po­lar­iza­tion is pre­served up to 100~GeV. About 10% po­lar­iza­tion loss has been ob­served dur­ing the ac­cel­er­a­tion be­tween 100~GeV and 255~GeV due to sev­eral strong de­po­lar­iz­ing res­o­nances. Mod­er­ate po­lar­iza­tion loss was also ob­served dur­ing a typ­i­cal 8 hour physics store. This pre­sen­ta­tion will overview the achieved per­for­mance of RHIC, both po­lar­iza­tion as well as lu­mi­nos­ity. The plan for pro­vid­ing high en­ergy po­lar­ized He-3 col­li­sions at RHIC will also be cov­ered.
This work is on behalf of RHIC team.
 
slides icon Slides TUYB103 [12.854 MB]  
 
TUPFI076 First RHIC Collider Test Operation at 2.5GeV Beam Energy 1523
 
  • C. Montag, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, M. Harvey, T. Hayes, L.T. Hoff, H. Huang, R.L. Hulsart, J.S. Laster, C. Liu, Y. Luo, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, S. Nemesure, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To search for the crit­i­cal point in the QCD phase di­a­gram, RHIC needs to op­er­ate at a set of low gold beam en­er­gies be­tween 2.5 and 20 GeV per nu­cleon. Dur­ing run 12, first suc­cess­ful col­lider op­er­a­tion at the low­est en­ergy of 2.5 GeV per nu­cleon was achieved. We pre­sent the chal­lenges and achieved re­sults, and dis­cuss pos­si­ble fu­ture up­grades and im­prove­ments.
 
 
TUPFI077 Commissioning Progress of the RHIC Electron Lenses 1526
 
  • W. Fischer, Z. Altinbas, M. Anerella, M. Blaskiewicz, D. Bruno, W.C. Dawson, D.M. Gassner, X. Gu, R.C. Gupta, K. Hamdi, J. Hock, L.T. Hoff, R.L. Hulsart, A.K. Jain, P.N. Joshi, R.F. Lambiase, Y. Luo, M. Mapes, A. Marone, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J.F. Muratore, S. Nemesure, D. Phillips, A.I. Pikin, S.R. Plate, P.J. Rosas, L. Snydstrup, Y. Tan, C. Theisen, P. Thieberger, J.E. Tuozzolo, P. Wanderer, S.M. White, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
In po­lar­ized pro­ton op­er­a­tion, the RHIC per­for­mance is lim­ited by the head-on beam-beam ef­fect. To over­come these lim­i­ta­tions two elec­tron lenses were in­stalled and are under com­mis­sion­ing. One lens uses a newly man­u­fac­tured su­per­con­duct­ing so­le­noid, in the other lens the spare su­per­con­duct­ing so­le­noid of the BNL Elec­tron Beam Ion Source is in­stalled to allow for prop­a­ga­tion of the elec­tron beam. (This spare mag­net will be re­placed by the same type of su­per­con­duct­ing mag­net that is also used in the other lens dur­ing the 2013 shut-down.) We give an overview of the com­mis­sion­ing con­fig­u­ra­tion of both lenses, and re­port on first re­sults in com­mis­sion­ing the hard­ware and elec­tron beam. We also re­port on lat­tice mod­i­fi­ca­tions needed to ad­just the phase ad­vance be­tween the beam-beam in­ter­ac­tions and the elec­tron lenses, as well as up­grades to the pro­ton in­stru­men­ta­tion for the com­mis­sion­ing.
 
 
TUPFI081 Progress with Coherent Electron Cooling Proof-Of-Principle Experiment 1535
 
  • I. Pinayev, S.A. Belomestnykh, I. Ben-Zvi, K.A. Brown, J.C. Brutus, L. DeSanto, A. Elizarov, C. Folz, D.M. Gassner, Y. Hao, R.L. Hulsart, Y.C. Jing, D. Kayran, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, R.J. Michnoff, T.A. Miller, M.G. Minty, P. Orfin, A. Pendzick, F. Randazzo, T. Rao, T. Roser, J. Sandberg, B. Sheehy, J. Skaritka, K.S. Smith, L. Snydstrup, R. Than, R.J. Todd, J.E. Tuozzolo, G. Wang, D. Weiss, M. Wilinski, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, J.R. Cary, K. Paul, B.T. Schwartz, S.D. Webb
    Tech-X, Boulder, Colorado, USA
  • C.H. Boulware, T.L. Grimm, R. Jecks, N. Miller
    Niowave, Inc., Lansing, Michigan, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • M. Poelker
    JLAB, Newport News, Virginia, USA
 
  We con­duct proof-of-the-prin­ci­ple ex­per­i­ment of co­her­ent elec­tron cool­ing (CEC), which has a po­ten­tial to sig­nif­i­cantly boost lu­mi­nos­ity of high-en­ergy, high-in­ten­sity hadron col­lid­ers. In this paper, we pre­sent the progress with ex­per­i­men­tal equip­ment in­clud­ing the first tests of the elec­tron gun and the mag­netic mea­sure­ments of the wig­gler pro­to­type. We de­scribe cur­rent de­sign sta­tus as well as near fu­ture plans.  
 
TUPFI084 RHIC Polarized Proton Operation for 2013 1544
 
  • V.H. Ranjbar, L. A. Ahrens, E.C. Aschenauer, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, Y. Dutheil, W. Fischer, C.J. Gardner, J.W. Glenn, X. Gu, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, A.I. Kirleis, J.S. Laster, C. Liu, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, S. Nemesure, P.H. Pile, A. Poblaguev, V. Ptitsyn, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, D. Smirnov, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, G. Wang, M. Wilinski, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • O. Eyser
    UCR, Riverside, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 2013 op­er­a­tion of the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) marks the sec­ond year of run­ning under the RHIC II era. Ad­di­tion­ally this year saw the im­ple­men­ta­tion of sev­eral im­por­tant up­grades de­signed to push the in­ten­sity fron­tier. Two new E-lenses have been in­stalled, along with a new lat­tice de­signed for the E-lens op­er­a­tion. A new po­lar­ized pro­ton source which gen­er­ates about fac­tor of 2 more in­ten­sity was com­mis­sioned as well as a host of RF up­grades from a new lon­gi­tu­di­nal damper, Lan­dau cav­ity in RHIC to a new low level RF and new har­monic struc­ture for the AGS. We pre­sent an overview of the chal­lenges and re­sults from this years run.
 
 
TUPWO073 Precision Tune, Phase and Beta Function Measurement by Frequency Analysis in RHIC 2027
 
  • C. Liu, R.L. Hulsart, A. Marusic, R.J. Michnoff, M.G. Minty, P. Thieberger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The high qual­ity of the RHIC turn-by-turn (TbT) data ob­tained from the beam po­si­tion mon­i­tor (BPM) sys­tem was fully ex­ploited by using two analy­sis ap­proaches. One is a time do­main least square fit­ting tech­nique and the other one is a fre­quency do­main in­ter­po­lated Fourier Trans­form tech­nique. Both meth­ods were ap­plied to 1024-turn data from kicked beam and from con­tin­u­ous co­her­ent ex­ci­ta­tion ex­per­i­ments. The be­ta­tron phase pre­ci­sions ob­tained with both meth­ods were ~0.1 de­gree for the con­tin­u­ous ex­ci­ta­tion and ~0.2 de­gree for the im­pulse ex­ci­ta­tion. The al­go­rithms of these two analy­ses and com­par­i­son of their re­sults will be pre­sented in this re­port.