Author: Benedikt, M.
Paper Title Page
WEPEA001 Simulation Studies of Longitudinal RF-noise and Phase Displacement Acceleration as Driving Mechanism for the MedAustron Synchrotron Slow Extraction 2501
 
  • U. Dorda
    EBG MedAustron, Wr. Neustadt, Austria
  • M. Benedikt, H.O. Schönauer, A. Wastl
    CERN, Geneva, Switzerland
 
  MedAustron is a synchrotron based hadron therapy and research facility located in Austria currently entering the installation stage. It is an implementation of the CERN-PIMMS design which proposed induction acceleration by a betatron core as the driving mechanism for the third-order slow resonant extraction. Primarily in order to increase the accelerators flexibility towards future irradiation schemes but also as back-up options, two alternative extraction driving mechanism have been studied: Longitudinal RF-noise and phase displacement acceleration. The advantages as well as the corresponding limitations are explained, analytical estimates and particle tracking results performed with the 2D tracking codes LONG1D and a specifically developed Python based simulation code are presented.  
 
WEPEA043 Working Point and Resonance Studies at the CERN PS 2597
 
  • A. Huschauer, M. Benedikt, H. Damerau, P. Freyermuth, S.S. Gilardoni, R. Steerenberg, B. Vandorpe
    CERN, Geneva, Switzerland
 
  The increase of luminosity demanded by the High Luminosity LHC (HL-LHC) requires an increase of beam intensity, which might result in instabilities appearing at injection energy in the CERN PS. Transverse head-tail instabilities have already been observed on operational LHC beams and a stabilizing mechanism as an alternative to linear coupling is currently being studied. It consists of reducing the mode number of the transverse oscillation by changing linear chromaticity and in succession completely suppressing the instability by a transverse damper system with appropriate bandwidth. Therefore, a chromaticity correction scheme at low energy exploiting the intrinsic possibilities offered by special circuits mounted on top of the main magnet poles, the Pole Face Windings (PFW), has been examined. The presence of destructive betatron resonances, which restrict the choice of the injection working point and the maximum acceptable tune spread, forms an additional limitation for high-brightness and high-intensity beams in the CERN PS. To improve the current working point control scheme, the influence of the P F W on the machine resonances is presented in this paper.  
 
THPFI056 Design Study for a Future LAGUNA-LBNO Long-baseline Neutrino Facility at CERN 3418
 
  • I. Efthymiopoulos, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, M. Calviani, A. Ferrari, R. Garoby, F. Gerigk, S.S. Gilardoni, B. Goddard, A. Kosmicki, C. Lazaridis, J.A. Osborne, Y. Papaphilippou, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg, P. Velten, H. Vincke
    CERN, Geneva, Switzerland
 
  A design study for a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY) at CERN was initiated in September 2011, supported by EU/FP7 funds. The beam will be aimed at a next generation deep-underground neutrino observatory located at the Pyhasalmi (Finland) mine at a distance of 2300 km. In an initial phase the CN2PY facility will use a 400 GeV beam extracted from SPS up to a maximum power of 750 kW, and in a second phase a 2 MW beam of about 50 GeV produced by a new High-Power Proton Synchrotron accelerator using the LP-SPL as injector also under design. The paper will focus on the design challenges of this MW-class facility and on the optimization studies of the secondary beam elements (target and horns) to produce a neutrino beam spectrum that matches best the experimental requirements for neutrino flavor oscillations and CP-violation tests. The challenges and bottlenecks in the existing CERN accelerator complex to produce the high-intensity beams foreseen for this facility at the initial phase are discussed.  
 
THPWO081 Design Options of a High-power Proton Synchrotron for LAGUNA-LBNO 3948
 
  • Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, I. Efthymiopoulos, R. Garoby, F. Gerigk, B. Goddard, C. Lazaridis, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg
    CERN, Geneva, Switzerland
 
  Design studies have been initiated at CERN, exploring the prospects of future high-power proton beams for producing neutrinos, within the LAGUNA-LBNO project. These studies include the design of a 2 MW high-power proton synchrotron (HP-PS) using the LP-SPL as injector. This paper resumes the design options under study in order to reach this high power, and their implications regarding layout, magnet technology beam loss control and RF considerations. Optics optimization studies are also presented including beam transfer and collimation considerations.