Fast Feedback Strategies for Longitudinal Beam Stabilization IPAC 2012, New Orleans, USA

S. Pfeiffer¹, C. Schmidt¹, M.K. Bock¹, H. Schlarb¹, W. Jalmuzna², G. Lichtenberg³, H. Werner³

¹DESY Hamburg

²Technical University Lodz Department of Microelectronics and Computer Science

> ³Hamburg University of Technology Institute of Control Systems

21.05.2012

Contents

Optimal Beam Control

FLASH (Free electron LASer Hamburg)

Energy 1.25GeV, Wavelength down to 4.12nm

Basic Components

- RF Gun generates electrons, first pre-accelerator
- Cryomodules increases the energy of the electrons
- Bunch Compressor reduces the bunch length
- sFLASH and Undulators excite the electrons to emit X-ray by SASE (Self-Amplified Spontaneous Emission) process
 - Pump-Probe Experiments

Conclusion

FLASH (Free electron LASer Hamburg)

Energy 1.25GeV, Wavelength down to 4.12nm

Basic Components

- RF Gun generates electrons, first pre-accelerator
- Cryomodules increases the energy of the electrons
- Bunch Compressor reduces the bunch length
- sFLASH and Undulators excite the electrons to emit X-ray by SASE (Self-Amplified Spontaneous Emission) process
 Pump Proba Experimenta
 - Pump-Probe Experiments

FLASH (Free electron LASer Hamburg)

Energy 1.25GeV, Wavelength down to 4.12nm

Basic Components

- RF Gun generates electrons, first pre-accelerator
- Cryomodules optimal acceleration field control
- Bunch Compressor control beam properties
- sFLASH and Undulators excite the electrons to emit X-ray by SASE (Self-Amplified Spontaneous Emission) process
 - Pump-Probe Experiments

System Description

Physics

Equations

White Box Model

Engineering

Black Box Model

miles per second while the speed of Lite is only 100,000 miles per second."

System Description

Identification Methods

miles per second while the speed of Lite is only 100,000 miles per second."

System Description

System Identification

- Parameter Identification within minutes XFEL (26 RF stations)
- LTI (Linear Time-Invariant) Dynamic Model
 - Bandwidth, static gain, passband modes

Model Based Controller Design

$\textbf{MIMO System} \rightarrow \textbf{MIMO controller}$

- Modern optimal controller design methods
 - (1) H_{∞} -Fixed Order Optimization discrete time (HIFOOd)
 - (2) Shape the desired closed loop system behavior
- Controller Requirements
 - (1.1) \rightarrow Robust system is stable for large parameter ranges
 - (1.2) \rightarrow Fixed controller order FPGA
- (1.3)+(2) \rightarrow Optimal fast response
- (1.3)+(2) $\,\rightarrow$ Decoupling necessary for beam based feedback

This would go beyond the scope of this talk!

... is necessary for optimal beam control!

Model Based Controller Design

$\textbf{MIMO System} \rightarrow \textbf{MIMO controller}$

- Modern optimal controller design methods
 - (1) H_{∞} -Fixed Order Optimization discrete time (HIFOOd)
 - (2) Shape the desired closed loop system behavior
- Controller Requirements
 - (1.1) \rightarrow Robust system is stable for large parameter ranges
 - (1.2) \rightarrow Fixed controller order FPGA
- (1.3)+(2) \rightarrow Optimal fast response
- (1.3)+(2) $\,\rightarrow$ Decoupling necessary for beam based feedback

This would go beyond the scope of this talk!

... is necessary for optimal beam control!

Bunch Compressor

Bunch Compressor

Bunch Compressor

		000	
Fast	Feedback Strategies		
	Field Feedback Loop No Beam Control	Field stability $\frac{\Delta A}{A}$ $\approx 0.01\%$	Δt_A after 1st BC
<u>r</u> _F	e_F - Loop delay of field: $t_{D,F} \approx 4\mu s$	$\begin{array}{c} u_{FF} & u \\ \hline \\ C(z) & u_C \\ \hline \\ \Delta t_A, \Delta C & e_E \\ \hline \\ y_{I}, y_Q & y_F \end{array}$	$G_{F}(z)$ $G_{F}(z)$ $G_{F}(z)$ G_{B} G_{B}

Motivation o	Optimal Field Control	Optimal Beam ⊙⊙●	I Control	Conclusion
Fast	Feedback Strategie	es		
	Field Feedback Loop No Beam Control	Field stability $pprox 0.01\%$	$\stackrel{\underline{\Delta A}}{\longrightarrow} \Delta t_A \approx$	after 1st BC $575 fs$
<u>r</u> _F FPC	e_{F} $Example 1$ 1 Mhz rep. rate: $\Delta t_{A} < 30 fs$ (desired by user) GA	$\mu s \qquad 2\mu s \pm \Delta t_A \qquad 3\mu s \qquad \Delta C \qquad \Delta t_A,$	FF u $G_F(x)$ μs I, Q A G_B ΔC e_B	<i>z</i>) G(z)

Fast Feedb	ack Strategies	;	
Field Set-Point	Feedback Loop t Change by Beam	Field stability $\frac{\Delta A}{A}$ $\approx 0.005\%$	Δt_A after 1st BC $\approx 40 fs$
r _F e _F	Loop delay of field: $t_{D,F} \approx 4 \mu s$	$UFF \qquad u$ $UC(z) \qquad UC \qquad U$	$G_{F}(z)$ $G_{F}(z)$ G_{B} G_{B} G_{B}

0 00000	000	
Fast Feedback Strategies		
Cascaded FB Loop Field - and Beam Weighting	Field stability $\frac{\Delta A}{A}$ $\approx ? \%$	Δt_A after 1st BC $pprox ? fs$
$\begin{array}{c} r_{F} & e_{F} \\ \hline 0 \dots 1 \\ 0 \dots 2 \\ \hline BW \\ \hline 0 \dots 2 \\ \hline BW \\ \hline 0 \dots 2 \\ \hline BW \\ \hline \Delta \\ \hline Loop \ delay \ of \ field: \\ t_{D,F} \approx 4\mu s \\ \hline FPGA \\ \end{array}$	u_{FF} u_{FF} $u_{C(z)}$ u_{C}	$\begin{array}{c} u \\ \hline G_F(z) \\ \hline I, Q, \phi \\ \hline G_B \\ \hline G_B \\ \hline G_F \end{array}$

Conclusion & Outlook

- Model based design
 - Usable for all RF stations fast and reliable
 - Necessary for optimal field and beam control
- Fast feedback strategies for longitudinal beam stabilization
 - Only field control $\Delta t_A \approx 75 fs$ $\Delta t_A \approx 40 \, fs$
 - Beam based setpoint adaptation
 - Cascaded field beam controller

Outlook ...

- Update same structure before 2nd BC section
- uTCA

Thank you for your attention...

 $\Delta t_A \approx 24 fs$