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Abstract 
   Quasistationary sheet beam propagation was studied in 
case of particle nonlinear  transverse oscillations. 
Equations for the beam envelope and rms emittance were 
obtained. The effective emittance is proved to increase 
with  time. Beam parameters required for stationary 
equilibrium state existence are found. 

 

INTRODUCTION 
   Effective emittance growth or filumentation appeared in 
channels due to different reasons makes the problem of 
matching more difficult. One of the filumentation reasons 
is nonlinearity of own beam electromagnetic fields. It is 
very important to find scaling laws of this phenomena.  
   Real beam does not have uniform charge density. In 
most practically important cases the beam density may be 
presented as Gaussian. If own beam electromagnetic 
fields prevalence above beam emittance, the effective 
emittance growth may be observed, resulting in particle 
losses despite the initial beam rms size matched with 
channel [1]. In papers [1,2] the nonuniform beam 
behaviour was investigated, but solutions obtained were 
not self-consistent. In paper [1] radius equation of 2nd 
order was obtained, but rms emittance time-dependence 
was calculated approximately. In paper [2] rms emittance 
dependence from time was not taken into account, 
because authors supposed beam cross-section oscillated in 
self-similar manner.  
   In this report solutions for sheet beam with nonuniform 
charge density are presented. Density distribution was 
aproximated as parabolic with density maximum on beam 
axis. Such distribution shape is sufficiently close to 
Gaussian and allows to consider the problem analitically 
and to obtain equations for beam envelope and beam rms 
emittance in self-consistent manner.      

 

MODEL CALCULATIONS 
Let consider quasistationary intensive sheet beam. If 

beam lifetime is significantly more than the time of 
transition processes in beam, one can describe the beam 
behaviour by means of smooth function R(z), where R(z) 
– beam tranverse size, z – longitudinal coordinate. In case 
of uniform charge density in beam cross-section we can 
use K-V-invariant [3] for beam description: 
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where x' is derivative of x with respect to z, R' – 
derivative of R with respect to z, 0ε - beam rms emittance 
squared, x – transverse coordinate. 
   Let consider the beam with nonuniform density n(x,z): 
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So particle transverse motion is described by equation: 

3
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Here  (z)1α = k (z)a0 , (z)3α  = (z)/3ka2  , 

22 /mce4 k π= . 
 
We can built the integral for equation (3) with help of 
relation 
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   Let substitute (4) in (3) and neglect all summands with 
5th power and higher. Then let introduce kinetic 
distribution function  

)1(2nf(I) 0 I−= σ . 

Here 0n  – normalization constant, time-independent,  σ – 
Heaviside function. We can use the distribution function 
differed from Maxwellian because charged particle beam 
is not thermodynamically equilibrium system. So one can 
obtain for the beam charge density: 
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where  
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function u  is solution of equation 

 
3
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Taking into account the whole current conversation, one 
can obtain for dimensionless beam radius and effective 
emittance next system [4]: 
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Here  α andβ  are dimensionless radius and rms 

emittance respectively, 3/2
10 )/( llu=α  ,  

2
00lεβ = , pcl ω/1 = ,  LevnJl 00 2/=    , J  is the 

whole beam current,   L  - the width of beam,    pω is 

plasma frequency, corresponding to density value 0n ,   
v  is beam velocity. 

In (8) rms emittance time-dependence was obtained in 
self-consistent manner, because f(I) built automatically 
satisfies to Vlasov equation, and relation for density (5), 
i.e. zero moment of distribution function, has a parabolic 
dependence from   x . 

System (8) has stationary equilibrium solution: 
              
  1== βα  .  
 
This solution corresponds to beam radius value          
 

3/2
00 )/( lclR pω= , 

 
and  effective emittance value 
 

2
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Here η  is normalizing constant. 
To investigate equilibrium solution stability one have to 

build Lyapunov function. It was found that near the 
equilibrium stationary solution the equations of first 
approximation are not applicable, and according to Raus-
Gurvitz criterium the equilibrium point  is singular point 
of higher order. 

The system (8) was solved by means of Runge-Kutta-
Feldberg method of 4th order. Analysis of the results 
obtained shows that: 

1. if β =1, then phase curve )(αα′ is closed and 
beam envelope performs harmonic oscillations 
with an amplitude depending from initial beam 
radius value. 

2. if beam radius has initial value equaled to 
equilibrium stationary value, and rms emittance 
differs from equilibrium value, effective emittance 
growth is observed. The amplitude of the radius 
oscillation grows too. 

3. if initial values of radius and rms emittance are 
significant different from equilibrium ones, the 
significant growth of the effective emittance is 
observed. The particle oscillations have two 
characteristic frequencies (Fig.1). 

 

  CONCLUSIONS 
Nonlinear dynamics of sheet beam was studied in 
colissionless approximation because the time between 
binary collisions is more than the pulse duration. 
Transverse charge density nonuniformity lead to 
essentially nonlinear particle transverse oscillations, they 
can be described by Duffing equation with zero right part. 
Depending on nonlinearity power the growth of effective 
emittance can be observed at a time corresponding to 
about a quarter of the plasma wavelength. The beam 
parameters exist corresponding to the case when the 
effective emittance and the beam transverse size does not 
grow. The results obtained are valid under the condition   

pcl ω/0 > , i.e. when minimum characteristic system 
size is more than maximum beam plasma wavelength. 
   In the problem studied above the envelope equation of 
4th order was obtained. The coefficient of first radius 
derivative is not equal to zero differing from the case of 
envelope equation for uniform density beam. In the 
absence of energy dissipation in the channel, this fact 
means that the reason for the growth of the beam effective 
emittance with a nonuniform density profile is the 
transition of part of potential energy into kinetic energy of 
transverse motion of the particles. 
 

       
 

 

 

Fig  1: Phase curve for initial values 10 ≠α and 10 ≠β . 

 

ure

Proceedings of IPAC2012, New Orleans, Louisiana, USA WEPPR025

05 Beam Dynamics and Electromagnetic Fields

D04 High Intensity in Linear Accelerators

ISBN 978-3-95450-115-1

2989 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



REFERENCES 
[1] E. P. Lee and R. K Cooper, Particle Accelerators 7 (1976) 

83. 
[2] P. M. Lapostolle,  IEEE Trans. NS-18 (1971) 1101. 
[3] I. M. Kapchinsky and V. V. Vladimirsky. In Proc. 1959 Int. 

Conf. High Accelerators and Instruments, CERN, Geneva, 
p. 274 (1959). 

[4] H. Ye. Barminova, A. S. Chikhachev, J. Comm. 
Technology and Electronics 37, No 9 (1992) 1658. 

  

WEPPR025 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

2990C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Beam Dynamics and Electromagnetic Fields

D04 High Intensity in Linear Accelerators


