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 Abstract 
   Plasma based surface modification is a promising 
alternative to wet etching of superconducting radio 
frequency (SRF) cavities. The crucial aspect of the 
technology development is dependence of the etching 
rate and surface roughness on the frequency of the power 
supply, pressure, power level, driven electrode shape and 
chlorine concentration in the gas mixture during plasma 
processing. To optimize the plasma parameters, we are 
using a single cell cavity with 20 sample holders 
symmetrically distributed over the cell. These holders are 
used as diagnostic ports for the measurement of the 
plasma parameters and as holders for the samples to be 
etched. The plasma properties are highly correlated with 
the shape of the driven electrode and chlorine 
concentration in the Argon/Chlorine gas mixtures.  

INTRODUCTION 
To improve the RF performance of the SRF niobium 

cavities, the cavity surface must be prepared by a process 
that enhances surface smoothness, removes impurities 
and create less sharp grain boundaries. Currently used 
technologies are buffered chemical polishing or electro 
polishing. These technologies are based on the use of 
hydrogen fluoride (HF) in liquid acid baths, which poses 
major environmental and personal safety concern. HF-
free plasma-based (“dry”) technologies are a viable 
alternative to wet acid technologies as they are much 
more controllable, less expensive and more environment-
friendly.  

As a proof of concept we developed an experimental 
setup for etching of small niobium samples. The 
microwave plasma (2.45 GHz) frequency inside a quartz 
tube was used for this experiment. The gas mixture used 
was 97% argon and 3% chlorine. While the results with 
the flat samples were very encouraging [1], with etching 
rates up to 1.7 m/min and surface roughness down to 
below 100 nm, the two parameters could not be achieved 
with the same treatment. Results are indicative of 
competitive character of the surface smoothness and 
etching rate. This is not a problem since the discharge 
parameters can be switched from one mode to the other 
during a single process. In every case, however, the 
surface roughness of plasma etched sample is equal or 
better than the chemically etched samples. The next step 
in the development of plasma etching technology for  

  SRF cavity is to perform the etching of a single cell 
niobium cavity on optimized plasma parameters. 

SINGLE CELL CAVITY EXPERIMENT 
The cavity envelope is defined by the resonant low-

loss requirement for maximizing the cavity Q factor and 
generating the accelerating gradients at microwave 
frequency of 1.5 GHz. It is designed to the resonant 
power coupling, maximum electric field at central axis, 
and minimum electric field at the cavity walls to avoid 
field emission. Optimal plasma etching conditions will 
require an electric field at the walls to produce the 
needed voltage for radial acceleration of reactive ions. 
Therefore, power coupling for plasma etching has to 
generate a TEM mode component. In this work we are 
studying two cases: (a) EM wavelength much longer than 
the cell longitudinal dimension, at frequency of 100 
MHz, and (b) EM wavelength smaller than the cell 
length at frequency of 2.45 GHz.  A specially designed 
diagnostic cell has been used for preliminary testing of 
the plasma uniformity and surface processing 
performance. The cell has a set of 20 sample holder ports 
that can be used as plasma observation windows or small 
sample holders for etching tests. To verify the non-
uniformity and other plasma parameters in the cavity, a 
fiber-optic diagnostic system is developed. Five optical 
fibers of 1 mm diameter are placed with the help of a 
feed through at the 5 different hole positions on the 
cavity, as shown in Fig. 1. 

 

 
Figure 1: Single cell experimental set up. 

 

As the plasma properties and in turn the etching 
properties vary substantially with the frequency, pressure 
and power levels inside the etching reactor, we have to 
optimize these parameters for the most efficient and 
uniform surface material removal from  the samples 
placed on the cavity perimeter. 
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RESONANT MICROWAVE 
BREAKDOWN 

        The breakdown electric field at any given frequency 
depends on the size of the cavity due to the diffusion loss 
of the electrons to the walls. Although microwave 
breakdown is essentially a time-dependent initial-value 
problem, we can use the stationary diffusion equation to 
evaluate the diffusion length and calculate the breakdown 
conditions. The stationary diffusion equation is obtained 
from the electron balance equation [2], 

( )12 qenD
t
en

=∇−
∂

∂  

where ne is the electron density, D is the electron 
diffusion coefficient, and q is the gain (or loss) of 
electron density,  

( ) ( )2,enaiq νν −=  

Where i is the ionization rate, and a is the rate of 
electron attachment to chlorine atoms and molecules.   

( ) ( )3.02 =−+∇ enaienD νν

The breakdown condition is achieved when the electron 
density gain equals the loss by diffusion
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where diff is the rate of electron loss by diffusion,  is 
the effective diffusion length. Assuming that D, , i, and 

a are uniform in the whole volume and that electron 
density is zero at the walls, the Eq. (3) is reduced to an 
eigenvalue problem. In the absence of magnetic field, the 
solution [3] for the cylinder of radius R and height L has 
the form
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where Jo is the zero-order Bessel function of the first kind 
and the eigenvalue is 
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Electron diffusion coefficient is given  [2] by 
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where v and v are the velocity and the average velocity of 
electrons, respectively, m is the effective collision 

frequency for electron momentum transfer, and  is the 
corresponding mean free path.  In order to continue the 
analysis of the resonant microwave breakdown we will 
approximate the elliptical cavity with equivalent pillbox 
geometry.  The geometry of a single cell of the resonant 
pillbox is cylindrical with  
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where c is the speed of light, and res is the resonant 
frequency of the microwave field, which is 1.5 GHz in 
the present case. Then, the effective diffusion length in 
the absence of magnetic field is 
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Note that the diffusion length is five times smaller than 
the pillbox length L. Therefore, it is to be expected that 
the bulk plasma ionization process will cover the whole 
longitudinal dimension of the cavity. In the radial 
dimension, the effective diffusion length is smaller by 
3.5 times than the effective pillbox radius. We are 
expecting plasma uniformity in the single cell at low 
pressure conditions (less than 5 Torr, approximately).    

NON-RESONANT MICROWAVE 
BREAKDOWN 

Since in our case the volume is large, additional 
electron loss in attachment and formation of negative 
ions as well as complex geometry lead to non linearity of 
Eq. (3), which often cannot be solved analytically 
without adequate approximation. Plasma etching is 
performed at two frequencies that are far from resonance 
for the particular SRF cavity with the purpose to generate 
radial electric field at the walls. The approach results in 
the so-called asymmetric RF discharge at 100 MHz, 
where the powered electrode is positioned along the axis 
[4], and the cavity walls acts as the grounded electrode. 
At 2.45 GHz the cavity is detuned by a rod antenna to 
obtain the optimum power coupling 

To understand the effect of the length and diameter of 
the antenna we did CST Microwave simulation were 
performed on 1.5 GHz resonance cavity with 2.45 GHz 
frequency power supply. We varied the length of the 
antenna and look for the most uniform distribution of the 
electric field inside the cavity. 
We found that a rod with small diameter and full length 
of the cavity would give the most uniform distribution of 
the field inside the cavity (See Fig. 2). 

 
Figure 2: Electric field distribution in the detuned single 
cell cavity. 
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The set-up for the asymmetric RF (100 M
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EXPERIMENTAL RESU
     During the optical emission 
measurements of the single cell plasma, t
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time. Then measurement has been perfor
mixture of 97% argon and 3% chlorine. Ex
done at 0.05, 0.1, 0.5, 0.75 Torr pressure. P
with the help of an attenuator. Photo of 
seen through the cavity holes is the firs
plasma uniformity (see Fig. 3). 

 

 
Figure 3: Plasma through the cavit

 
It is very encouraging as the nonuniform

intensity which directly correlates to non
radicals is within 25%. 

Figure 4: Relative intensity of argon and c
as a function of pressure in the cell. 
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CONCLUSION
   In view of the complex technologic
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