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Abstract
The broadband BPM system at the Advanced Photon

Source (APS) is being upgraded with FPGA-based beam

history modules, which fix problems in the old history

modules and increase functionality. Using these new turn-

by-turn BPMs and the newly developed real-time feedback

system, measurement of BPM gains, beta function, and

other optics functions are being developed based on model-

independent analysis of turn-by-turn data and model fitting,

aiming at quasi-real-time and high-accuracy optics mea-

surement. We will discuss our on-going effort and some

measurement results without coupling.

INTRODUCTION
In the APS storage ring, each of the 40 sectors has 9 but-

ton BPMs. All the BPMs were designed to have turn-by-

turn broadband beam history modules. Unfortunately, the

original implementation was faulty and unreliable [1], thus

unsuitable for routine model-independent analysis (MIA)

applications. Now, this broadband BPM system is being

upgraded by gradually replacing 7 of the 9 BPMs with

FPGA-based beam history modules. So far, 18 of the 40

sectors have been upgraded. To take advantage of these

FPGA BPMs and the fast measurement capability of MIA,

we renewed our MIA optics measurement effort, aiming at

quasi real time and high accuracy.

It is well-known that the betatron phase advances be-

tween BPMs can be measured model-independently with

either harmonic analysis technique for sinusoidal beam

motion or with MIA for general excitations [2]. How-

ever, measurements of beta function and many other quan-

tities depend on the BPM gains that usually can not be pre-

determined reliably, especially considering that BPM per-

formance is sensitive to many factors including beam con-

dition. Thus, beam-based gain measurement is necessary

and relies on fitting with a sufficiently good model, which

is often available nowadays for storage rings. In this report,

we discuss our effort on model-fitting with MIA measure-

ments at the APS storage ring. Model-fitting with beam

history measurement has been done successfully at the B-

Factory of SLAC. Nonetheless, such efforts are machine-

dependent and rather involved. This progress report de-

scribes our effort at the APS storage ring.

BETATRON MODES MEASUREMENT
Extraction of high-accuracy independent betatron orbits

from measured beam histories is the foundation for beam-
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history-based linear optics measurement. There are two in-

dependent orbits in each plane. If beam motions are sinu-

soidal oscillations, Fourier analysis can be used to extract

the sine and cosine components as the independent orbits,

as was done at the SLAC B-Factory with resonance beam

excitation. At the APS, sinusoidal oscillation is hard to

achieve even with resonance drive, because of 1) the strong

nonlinearity due to strong focusing and the large number

of sextupoles and 2) the strong wakefield due to small-gap

insertion devices, which are typical of 3rd-generation light

sources. It has been shown that MIA can extract betatron

modes from all kinds of beam excitations at the APS [2].

Thus, we will use MIA betatron modes for optics measure-

ment.

Beam Excitation
We can excite betatron oscillation with injection kickers

and a vertical pinger or with a newly installed turn-by-turn

feedback system. Kick excitation is easy to control and re-

peatability is rather good, but the signal decoheres quickly

due to strong nonlinearity. A new bunch-by-bunch feed-

back system was installed recently that provides a more

convenient drive. Feedback excitation is basically a reso-

nance drive. Thus it is not easy to control the excitation

amplitudes, especially since beam tune can change with

amplitude and instability is often excited. The main ad-

vantage of resonance drive is that the signal is continuous

and FPGA BPMs can record up to about a whole second

(218 turns), which can yield better accuracy. Furthermore,

the feedback drive can target an individual bunch and is

less invasive. We have used both kick and resonance exci-

tations.

Overcome Obstacles from Real-life BPMs
Turn-by-turn beam histories are much more informative,

yet more prone to various defects. In practice, it is a real

challenge to (automatically) identify and overcome prob-

lems due to BPMs. Our new FPGA BPMs are much more

stable, and thus alleviate many of the hurdles. But still,

problems exist and have to be dealt with. Since we are

aiming at quasi real-time optics measurement, most of the

BPM analysis has to be automatic and sufficiently fast.

Typical BPMs problems we encountered are [3]: 1) dead

BPMs with no readings at all; 2) malfunctioning BPMs

without signal (e.g., no tune line in the beam history spec-

trum) or with a wrong signal (e.g., beam history pattern is

inconsistent with other BPMs); 3) unsynchronized BPMs

whose beam histories are shifted by one or more turns; 4)

noisy BPMs whose noise level and/or gain are much higher

than others. The“dead” BPMs are usually BPMs used for

other purposes and are easy to remove. The other BPM
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Figure 1: Singular-value spectra showing the effect of flat-

tening the noise floor. The main figure is the spectrum of

the raw data. The inset is the spectrum of the data normal-

ized by the estimated rms noise of the BPMs. Note that the

first two singular values in the raw spectrum are NOT from

betatron modes but due to BPMs. The betatron and syn-

chrotron modes are among the following modes (and mixed

with BPM modes). In contrast, the normalized data shows

a remarkably clear spectrum. Three dead BPMs shown up

at the tail.

problems could be difficult to deal with. SVD modes have

been shown to be useful for diagnosing problematic BPMs

[1]. However, since SVD modes tend to pick out BPMs

with large noise and mix betatron modes among them, it

can be difficult to automatically identify and extract the be-

tatron modes. We found a simple but very effective tech-

nique to work around this. First, the relative rms noise in

beam histories are estimated by cutting off major beam sig-

nals with a high-pass filter, assuming the noise spectra of

all BPMs are the same. Then, the beam histories are nor-

malized by their rms noise. This effectively flattens the

noise floor of the singular-value spectrum and lets the beta-

tron modes stand out as shown in Fig. 1. Using the betatron

modes as well as any problematic BPM modes, we identify

potentially malfunctioning BPMs and remove them. Using

the betatron modes, phase advances can be computed and

compared with the model. The unsynchronized BPMs will

show a phase error close to a multiple of the tune, assuming

the errors in lattice are typically small. Based on this, beam

histories are shifted to synchronize the data. However, am-

biguity may exist, especially when there are multi-turn off-

sets. Note that the amplitude of such determined betatron

modes can be far from the truth, which will be corrected by

fitting with an adequate model.

MODEL FITTING
There are various ways to fit the measurement with the

model. The obvious method is to fit the phase advances

because they can be measured accurately and are indepen-

dent of BPM gains. The disadvantage of this is that the

phase advances are global quantities, thus they can be af-

fected by lattice errors far from the involved BPMs. The

localized quantities are the transfer matrix elements. Since

only beam positions can be measured, not all matrix el-

ements can be measured except the Green’s-function ele-

ments such as R12. Measurement of these matrix elements

depends on BPM gains and excitation strength, which are

unknown and have to be fitted with the lattice all together.

This approach has been successfully used at SLAC [4, 5].

We will briefly describe our implementation of these two

methods for the uncoupled cases.

Fitting Phase Advances
To limit the disadvantage of fitting global quantities, we

do not fit the phase advances directly. Instead we choose to

localize the fitting to 4 BPMs based on the fact that

sinψ12 sinψ34

sinψ13 sinψ24
=
R12

12R
34
12

R13
12R

24
12

, (1)

where ψij and Rij
12 are the phase advance and the R12 ele-

ment between i-th and j-th BPMs, respectively. Although

the phase advances are global, the left-hand-side (LHS)

combination is not because the right-hand-side (RHS)

quantity depends on local transfer matrix only. There is

no gain dependence as well. We have yet to generalize this

to the fully coupled case.

Fitting Transfer-matrix Elements
From the spatial vectors of two betatron modes u and v,

one can calculate the R12 between two BPMs at the loca-

tions s1 and s2 as [6]

∣
∣
∣
∣

u1 v1
u2 v2

∣
∣
∣
∣
= g1g2R12(s1 → s2)W (s1), (2)

where g is BPM gain, and W is the Wronskian function.

The subscripts indicate BPM locations. The Wronskian

of any two betatron orbits is invariant if beam energy is

constant. It is proportional to the action of beam motion.

Analogous expressions for the fully coupled case has been

worked out in [4].

Algorithms for Fitting
The LHS of Eqs. (1) and (2) can be computed from mea-

sured betatron modes, while the RHS can be computed

from a model. Let M be the quantity to be fitted, assuming

lattices errors are small and thus responses to deviations are

linear, we can expand the model around a solution set ξ0 as

Mmod =M(ξ0) +
∑

ξ

∂M

∂ξ

∣
∣
∣
∣
ξ0

δξ + · · · , (3)

and neglect high-order terms. Least-squares fitting is used

to solve for the minimum corrections needed to mini-

mize the difference between measurement and model, i.e.,

‖Mmod. −Mmod.‖. The solution can be written as

δξ = (ATA)−1AT [Mmeas. −M(ξ0)], (4)
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where the design matrix A = [∂M/∂ξ]. If there is (close-

to) degeneracy, a pseudo inverse of A is used with noise

cutoff in place of (ATA)−1AT , a common algorithm avail-

able as a MATLAB built-in function. Usually many itera-

tions are needed to converge, if it can. Similar, if not the

same, fitting algorithms are used for the response-matrix

method and orbit-fitting at B-Factory at SLAC.

The major limitation in lattice fitting is that there are usu-

ally not a sufficient number of BPMs to uniquely solve the

lattice parameters such as quadrupole strengths. In other

words, the system is under-constrained when the rank of

the design matrix A is less than the number of parameters

in the model. Though not obvious, Eqs. (1) and (2) yield

equivalent sets of equations in terms of lattice fitting, i.e.,

no extra information can be gained. Nonetheless, fitting

both together may improve the fitting algorithm’s stability.

BPM Gain Determination
It is important to note that, even if the lattice fitting is

under-constrained, the BPM-gain fitting is always over-

constrained and thus should be reliable as long as the fit-

ting residual is sufficiently small. This is because, ig-

noring the Wronskian term for the moment, ‖ΔlnM‖ =
‖Agδg + ARδq‖ ≤ ‖Agδg‖ + ‖ARδq‖, where Ag is the

response to the BPM gain variation, and AR is the lattice

response to the quadrupole strength deviations δq, etc. It

is easy to see that Ag is full-ranked and independent of

AR. If the model is sufficiently good, both terms should

be minimized to zero. Because Ag has full rank, the solu-

tion must be unique, which is the actual BPM gains (up to

an overall scaling factor for all BPMs due to the unknown

Wronskian). However, because of the intrinsic nonlinear

nature of the problem, it is possible that the global mini-

mum solution is not found and both the lattice parameters

and gains are incorrect, in which case, the residual will be

large, indicating a bad fit. Figure 2 shows an experimental

confirmation of BPM gain measurement.

Beta Function Measurement
Using the measured BPM gains, the beta function can

be determined from the betatron modes. Figure 3 shows

the measured (dots) and fitted (red circles) beta function

and phase advances. The relative beta function difference

and absolute phase difference between the measured and
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Figure 2: BPM gain measurement test. Gains of two BPMs

were changed between two measurements. The measured

gain differences are plotted here. The two peak values

agree well with the given changes.
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Figure 3: Measured (dots) and fitted (red circles) beta func-

tion and phase advances. The middle part is yet to be filled

with installation of more FPGA BPMs.
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Figure 4: Quadrupole strength changes resulting from the

fitting. The localized nature of the fitting is evident.

fitted model lattice are also shown, whose rms values are

0.4% and 1◦, respectively. The associated quadrupole ad-

justments are shown in Fig. 4. Further improvements may

include x-y coupling, sextupole misalignments, wakefield

effects, as well as estimation of measurement errors.
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