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Abstract 
Low momentum compaction factor (low-alpha) 

operation has been recently added as a new operation 
mode at synchrotron SOLEIL. Both time resolved X-ray 
and THz radiation user communities are taking benefit 
from a hybrid filling pattern with a 4.8 ps RMS bunch 
length. With an alpha value of 1.7 10-5 (nominal alpha 
/25) and a bunch current of 65 µA, stable THz radiation is 
produced in the range of 8 - 20 cm-1. The optics presented 
at IPAC’11 [1] has been selected for the operation. This 
paper gives the comprehensive experimental 
characterization of this optics. Specificities of the low-
alpha operation, driven by the very demanding user 
experiments, are reviewed: beam position stability, 
extremely tight injected current increments during Top-up 
injection, and radiation safety aspects due to beam losses 
at injection. 

INTRODUCTION 
In the standard SOLEIL Storage Ring 400 mA 

operation, the electron bunch length is 18 ps RMS for 
bunches in the multibunch train, and 25 ps RMS for the 5 
mA single bunch of the hybrid filling pattern. A new 
mode of operation which provides electron bunch lengths 
in the range of a few picoseconds has been optimized, and 
photon beam has been delivered to users in this mode 
during two 48 hour sessions in December 2011 and April 
2012. The experience gained from the first operation led 
the users to ask for a Top-up operation. Moreover the 
transverse coupling has been reduced in order to increase 
the photon flux reaching the hard X-ray beamline.  

The low-alpha mode is intended to satisfy studies in the 
ps range using THz spectroscopy which highly benefit 
from the coherent emission, and time-resolved science 
with X-rays. In the other hand, experiments in the 
femtosecond range (typically a 100 fs RMS) will be soon 
possible at SOLEIL thanks to the femtoslicing operation, 
which is currently under construction. 

LOW-ALPHA OPTICS 

Optical Functions 
A low-alpha optics was first calculated and tested in 

2009 [2]. A substantial change in the SOLEIL optics 
compared to the nominal one is made (Fig. 1), which is 
essentially driven by the control of the first (α1) and 
second (α2) order of alpha relative to the electron energy 
deviation, and by keeping the horizontal emittance as 
small as possible. Eventually, the careful control of the 
horizontal dispersion function in the dipoles and 
sextupoles is the key component. This requires the 
polarity of one of the quadrupole and one of the sextupole 

families to be inverted. The control of the chromaticity 
also forces to enlarge the vertical betatron function to 
compensate for the low horizontal dispersion value in the 
defocusing sextupoles.  

 

 

 

 
Figure 1: Optical functions for the nominal alpha optics 
(dashed blue) and for the low-alpha optics (solid line red). 
Half a super-period of the ring is displayed (BETA code). 
 
Dynamic Apertures 

As a noteworthy consequence of the optics change, 
degraded performances with respect to the nominal optics 
are expected in terms of injection efficiency rate and 
beam lifetime. As the injected beam position amplitude 
ranges around -9 mm, the on-momentum dynamic 
aperture stays at the limit (Fig. 2). Moreover, the rotation 
of the beam in the longitudinal phase space during the 
injection process makes the off-momentum transverse 
acceptance especially critical. The one sigma injected 
beam from the Booster (L = 28 mm) requires after a ¼ of 
a synchrotron period a +2.4 % energy acceptance. Figure 
3 shows the inadequate off-momentum transverse 
dynamic aperture, which leads to a measured injection 
rate of 20 to 25 %. 

 

 
Figure 2: On-momentum dynamic aperture calculated at 
the injection point for the low-alpha optics (TRACY III 
code). 
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