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Abstract
A scaling law for the time-dependence of the dynamic

aperture, i.e., the region of phase space where stable mo-
tion occurs, was proposed in previous papers, about ten
years ago. It was showed that dynamic aperture has a log-
arithmic dependence on time, which would be suggested
by some fundamental theorems of the theory of dynamical
systems. Such a scaling law was recently extended also to
the intensity evolution in a storage ring. In this paper, in-
spired by these results, and inverse logarithm scaling law
for the luminosity in a circular collider is proposed. Such
a time-dependence is then tested against the data from the
LHC physics runs and also with some examples from other
machines. The results are presented and discussed in detail.

INTRODUCTION
The luminosity is the key figure-of-merit for colliders

and is expressed as

L =
γrfrevNbN1N2

4πε∗β∗
F (θc, σz, σ

∗), (1)

where γr is the relativistic γ-factor, frev the revolution fre-
quency, Nb the number of colliding bunches, Ni the num-
ber of particles per bunch in each colliding beam, ε∗ is the
rms normalised transverse emittance, and β∗ is the value
of the beta-function at the collision point. The factor F ac-
counts for the reduction in volume overlap between the col-
liding bunches due to a crossing angle and is a function of
the crossing angle θc, the transverse (σ∗) and longitudinal
(σz) rms dimensions. Eq. (1) is valid in the case of round
beams (ε∗x = ε∗y) and round optics (β∗x = β∗y ). Under nor-
mal conditions, i.e., excluding any levelling gymnastics or
dynamic beta effects, only the emittances and the bunch in-
tensities can change. Therefore, Eq. (1) is better interpreted
as peak luminosity at the beginning of the fill, while in gen-
eral L will be a function of time. When the burn off is the
only relevant mechanism for a time-variation of the beam
parameters, it is possible to estimate the time-evolution of
the luminosity, which turns out to be

L(t) =
Lpeak

(1 + at)
2 . (2)

In reality, the situation is much more complex. In the case
of a hadron collider, e.g., beam-beam and IBS affect the
beam parameters in such a way that the model (2) is not
valid anymore. Several approaches can be followed, for in-
stance, in Refs. [1, 2] phenomenological fit models were
proposed and applied with success to the characterisation
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of luminosity evolution in the Tevatron machine. The func-
tional form of the proposed models was suggested by con-
siderations on scaling laws of key quantities, such as emit-
tances, whenever IBS phenomena are considered.

Alternatively, in Ref. [3] the luminosity evolution is
studied starting from numerical simulations taking into ac-
count the relevant physical processes. Also in this case
the proposed approach was successful (in particular the
one based on direct tracking) in reproducing the luminosity
evolution in RHIC.

In this paper an alternative model to those used in
Refs. [1, 2] is proposed. The basis for such a model is
the evolution of the dynamic aperture (DA) with time in
a hadron collider. Some years ago, the analysis of single-
particle tracking results showed that the evolution of the
DA follows a simple law [4, 5], whose justification is not
entirely phenomenological. Recently, this approach was
successfully applied to the analysis of intensity evolution
in hadron machines [6]. So far, however, the results were
obtained for single-particle simulations or for conditions in
a running machine that were not including any collective
effect. In fact, to extend the proposed scaling law to lumi-
nosity evolution, it is necessary to show that it is valid also
in the presence of beam-beam effects. This seems to be
case and the results of numerical simulations are discussed
in a companion paper [7], which then opens the possibility
to justify the approach proposed.

LUMINOSITY EVOLUTION OVER TIME
The starting point is the dynamic aperture (defined as

the radius of the region in phase space where stable motion
over a given number of turns occurs) as a function of time.
Assuming a polar grid in phase space (with co-ordinates
expressed in units of beam σ)

x = r cos θ y = r sin θ with 0 < θ < π/2, (3)

if r(θ; t) stands for the last stable amplitude up to t turns in
the direction θ, then the dynamic aperture reads:

D(t) =
2

π

∫ π/2

0

r(θ; t) d θ ≡ 〈r(θ; t)〉. (4)

According to the results reported in Refs. [4, 5], the follow-
ing scaling law holds

D(t) = D∞ +
b

[log t]
κ , (5)

where D∞ represents the asymptotic value of the ampli-
tude of the stability domain, while b and κ are additional
parameters. These three quantities can be obtained by fit-
ting the results of numerical simulations. Under these as-
sumptions D(t) is expressed in units of beam σ.
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The interesting point is that such a parametrisation is
compatible with the hypothesis that the phase space can be
partitioned into two regions: a central core, with r < D∞,
where KAM [8] surfaces confine the motion, thus induc-
ing a stable behaviour apart for a set of small measure
where Arnold diffusion can take place; an outer part, with
r > D∞, where chaotic motion occurs and the escape rate
is given by a Nekhoroshev-like estimate [9, 10] such as

T (r) = N0 exp
(r∗
r

)1/κ
(6)

where T (r) is the number of turns that are estimated to be
stable for particles with initial amplitude smaller than r.

If the beam distribution is assumed to be Gaussian, then
by integrating over x′ and y′ and after changing coordinates
and a second integration over θ one obtains the final expres-
sion for the beam distribution, ρ̂(r) = re−

r2

2 . By using the
very definition of D(t), it is clear that the evolution of the
beam intensity N(t) can be found as

N(t)

N0
= 1−

∫ +∞

D(t)

ρ̂(r) dr = 1− e−
D2(t)

2 . (7)

Starting from these considerations and assuming that
Eq. (7) holds in a more general context than the original
one and that, furthermore, the intensities of the two beams
follow the same scaling law with the same (or similar) val-
ues of the parameters, then

L(t) = Lpeak

[
1− e−

D2(t)
2

]2
, (8)

whereLpeak = γrfrevNbN1,0N2,0/(4πε
∗β∗)F (θc, σz, σ

∗).
This would allow fitting the four parameters
Lpeak, D∞, b, κ from the measured luminosity evolu-
tion. The last three parameters could also be obtained by
fitting the intensity evolution with time.

Even Lpeak might depend on time because of emittance
growth phenomena. However, in case total beam intensity
measurements are available, these can be used to obtain
the fit parameters of the inverse logarithm law. Then, one
can define ε(t) = N1(t)N2(t)/L(t), then the quantity
ε(t)/ε(0) − 1 can be easily derived from the luminosity
measurement and analysed to determine its properties
and hence study the emittance growth processes. Of
course, the option of a blind fit of the measured luminosity
using the model (8) is always possible. Nonetheless, the
physical meaning of the fit parameters D∞, b, κ might
be lost and the whole procedure would become rather a
phenomenological approach.

RESULTS OF DATA ANALYSIS

LHC Case
The proposed model was applied to the LHC luminosity

data for the 2011 physics run. Both proton and ion cases
have been considered in this study, even if only the proton

case is reported here. The first step was to consider the in-
tensity evolution. In Fig. 1 (upper) an example of the total
intensity evolution for Beam 1 and 2 is showed, together
with the fit (7) and the very good agreement is clearly ob-
served. Next, the analysis of emittance growth effects was

Figure 1: Measured intensity evolution for the LHC
Beam 1 and 2 for proton fill 2208 (upper). The fits based
on (7) are also reported, showing the good agreement, even
if the two beams feature different behaviours. Relative vari-
ation of N1(t)N2(t)/L(t) for proton fill 2208 (lower). A
non-negligible emittance growth is visible.

made to assess whether these effects play a role in the evo-
lution of the luminosity. An example is plotted in Fig. 1
(lower).

In the following, the direct application of the model (8)
to L(t) is considered. In Fig. 2 an example is shown and
the good agreement is clearly visible. A detailed analysis
of the distribution of the fit parameters for the model (8)
was performed. In particular, it was checked whether any
correlation was found between the fill length and the fit pa-
rameters, but no relationship was found. The main result is
shown in Fig. 3. It is worthwhile stressing that during the
whole 2011 the LHC performance was increased, however,
a clear trend is only observed for Lpeak.

Tevatron Case
To show the general character of the proposed scaling

law, data from other colliders have been analysed. It is
the case of luminosity evolution for the Tevatron published
in Ref. [1]. The three different models used to analyse
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Figure 2: Measured L(t) by the ATLAS experiment for
proton fill 2208 together with the fit (8).

Figure 3: Evolution of the fit parameters D∞, b, κ for
model (8) as a function of fill number. The fills considered
are for the 2011 proton physics run.

L(t) have been considered here together with the proposed
model (8). The results of the fit are shown in Fig. 4, where
the measured data is plotted together with the four fitting
curves. If one excludes the pure exponential decay, the re-

Figure 4: Measured luminosity evolution for the Tevatron
(fill 4081 from Ref. [1]) together with the fit models [1]
and (8). The latter is at least as good as the others, but with
one fit parameter less.

maining three models are all very good approximations of

the real data. The one based on the inverse logarithm scal-
ing law is intermediate between those from Ref. [1] and as
good as the other two, in spite of having three instead of
four fit parameters. Once more, this indicates that the pro-
posed model is very accurate even as a pure phenomeno-
logical description of the data. A double-exponential fit-
ting function, which has been successfully used in other
studies [3], has not been tested here, but we believe that it
would have provided a good agreement with the data.

CONCLUSIONS
In this paper a model for describing the time-evolution

of the luminosity in a hadron collider has been proposed.
This was justified on a number of recent results concerning
the scaling law of dynamic aperture and intensity variation
with time for hadron machines. The proposed scaling law
was successfully applied to LHC data, for which both pro-
ton and ion fills have been analysed and found to be well
described by the model. Data from the Tevatron machine
were analysed as well, showing the same good agreement
with the scaling law (8). In the current studies a number of
simplifying assumptions have been made, in particular, the
burn off was not taken into account separately. Its effect
will be considered and used to refine the proposed model.

We would like to stress that this paper reports on work
still in progress and the next step is to find the appropriate
physical meaning to the fit parameters, e.g., the interpreta-
tion ofD∞ whenever collimators are used. This is a crucial
point to move from a pure phenomenological approach to
using the proposed model as a predictive tool of the be-
haviour of luminosity in a hadron collider.
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