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Abstract 
The Facility for Rare Isotope Beams (FRIB) is setting 

up its high-level application software architecture.  The 
architecture consists of back-end data storage, 
client/service infrastructure, control system connectivity, 
supporting libraries and front-end Graphical User 
Interface (GUI).   The relational database and services are 
based on the Integrated Relational Model of Installed 
Systems (IRMIS) design.  The GUI is based on Control 
System Studio (CSS) framework.  Libraries, service, data 
access and GUI tools will be available as Application 
Programming Interface (API).  The infrastructure and 
technologies chosen here will utilize the robustness and 
performance for applications, as well as support quick 
prototyping for physicists.  The overall architecture and 
some prototypes are described. 

INTRODUCTION 
The architecture for FRIB High-level Applications 

(HLAs) is to utilize feasible and cost effective 
technologies for the software needs during the FRIB 
design, installation, commissioning and operation.  For a 
modern accelerator, the software complexity is way 
beyond simple personal programming effort; therefore 
architecture reflecting all modern software needs is 
necessary as a systematic approach.  On the other hand, a 
comprehensive architecture design allows developers to 
take advantage of new technologies in computer software, 
hardware and network.  The architecture design serves as 
a standard applied to the FRIB Accelerator Systems with 
extension to the Experimental Systems.  A standard 
architecture can avoid unnecessary software complication 
such as hard-wiring or special codes, and duplicating 
efforts in various applications. 

ARCHITECTURE OVERVIEW 
HLA architecture has to fulfil both functional and non-

functional requirements. Functional requirements include 
database as backend storage, online physics model, data 
integrity and control system connectivity support; while 
the non-functional requirements should cover 
performance, reliability and scripting support.  

The data flow view of the architecture  is shown in Fig. 
1.  Starting from the bottom of the diagram, all static data 
are stored in a MySQL-based global database (Global 
DB) similar to the IRMIS (Integrated Relational Model of 
Installed Systems).  Physics routines, machine tuning 
algorithms and other utilities are supplied as software 

libraries in the left-hand side of the diagram.  XAL 
Toolkit [1], optimization routine, and data plotting 
package are examples of many supporting library 
packages. Device controls are done via EPICS 
(Experimental Physics and Industrial Control System).  
Client applications are the user interfaces to the entire 
control systems.  Examples of client applications are 
electronic logbook (E-log), machine settings save and 
restore (Save/Restore) and beam tuning applications.  In 
the middle, a group of services provide all links among 
the database, API libraries, interaction with control 
systems, and user controlled interfaces.  The services are 
distributed as their functions. 

 

 
Figure 1: Top-level FRIB HLA architecture diagram. 

 
The architecture design should take into account of all 

possible software needs such as data sharing, correlation, 
data exchange among applications, code reusability and 
cost efficiency.  It will be difficult to deal with many ad 
hoc applications, if the overall architecture is not well 
structured.  Design considerations are described briefly 
here. 

Simplicity 
A simple architecture system is more cost effective and 

easy to maintain.  Typically a simple system can provide 
better performance with less overhead.   

Service-oriented 
Standalone applications typically need to prepare large 

amount of data initialization, to perform heavy 
computation, to communicate in real time, and to display 
in high repetition rate of updates.  The result of such 
heavy applications is poor performance and less 
reliability. 
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One way to solve the performance and reliability 
problems is to implement a Service-Oriented Architecture 
(SOA) for high level applications [2].  Servers will handle 
heavy computation for better performance.  Reliability 
can be improved because functions are distributed to 
various services which have the same standard.  Properly 
designed service architecture also provides better 
flexibility and extensibility because they can be highly 
modularized and each can be swapped easily.  SOA is not 
needed for day one and can convert to service as needed.  
Because of the architecture’s modularization, it is easy to 
switch to new technologies when they are available. 

Up-to-date Technologie s
The architecture should be based on currently widely 

available technologies such as Web services as Web 
compatibility, EPICS v4 as new EPICS community trend 
and Eclipse plug-in architecture as package management.  
These technologies are just examples for the architecture 
design consideration.  As new technologies are available 
and matured, the team can consider the possibility of 
early adoption. Any new technologies will be used for 
production have to be proven robust and easy to maintain.  
Many new technologies such as web approach are 
optional and presently not in the baseline requirements. 

Re-usability and xtensibility E
Existing software such as XAL, IRMIS 

schema/services can be reused at FRIB in the way of 
callable API.  In addition, some GUI components such as 
orbit display, embedded e-log screen, and “Save to e-log” 
button should be callable API. 

Furthermore, common functionality can be shared 
among applications.  If any application has to implement 
every function in it without sharing common functions 
among applications, the maintenance overhead is high 
and application code might be overly complicated.  Also, 
even if some functions are not exactly the way application 
intending to use, it is easy to extend the existing functions 
for new needs. 

Portability 
Applications should be possibly adopted by other 

accelerator facilities.  Any library components or 
packages developed here should not include FRIB 
specific hardwired code.  It is recommended to use 
configuration files to handle site specific data. This will 
enable community-wide collaboration. 

Security 
To ensure uninterrupted operation, security is a vital 

part of the architecture.  Security consideration should be 
a balance between access convenience and safeguarding 
of the systems.  

Collaboration 
With limited resources and budget, it is practically not 

possible to develop a full blown software system with one 
institute alone.  On the other hand, many accelerator 

institutes face similar issues for high-level applications.  
Collaboration can be efficient to share work load.  
Properly dividing the entire software system can then 
distribute work effectively among collaborators.   

SERVICES 
Several services have been identified for the FRIB 

commissioning and operation needs.  They are described 
below. 

Magnet Service 
Magnet service handles all magnet PVs for reading, 

setting and monitoring.   Client applications do not have 
to worry about EPICS Channel Access connection.  This 
service should have the following features: 

 Updating set values and read-back values for all 
magnets with monitoring capability. 
 Providing magnet statuses. 
 Unit and magnet name conversion between physics 
and engineering (EPICS) names. 
 Handling out-of-tolerance exception when trying to 
set a magnet. 
 Knowing how to gracefully roll back magnets if any 
failed to set and logging problems. 
 Providing other magnet attributes such as location, 
polarity. 
 Handling multiple channels in parallel for best 
performance. 

RF Service 
Phase and amplitude for RF cavities should be locked 

to their desired energy profile.  A feedback-like program 
runs continuously to track RF settings such that they are 
not drifting away from the desired energy profile.  Also, 
running programs such as LEM and recovering from 
cavity quench requires careful RF setting, i.e. ramping in 
slow speed; all these considerations should be built in the 
RF Service.  

Model Service 
Model service runs online model periodically and 

makes up-to-date model data available for clients.  This 
model server can be extended to cover not only XAL 
model but many other modelling codes with uniform API.  
Details for the model server will be described in a 
separate contribution [3]. 

LEM Service 
Linac energy manager (LEM) for maintain certain 

beam optics due to energy change should run all the time 
to allow fast optics correction and restoration. 

Save/Restore Service 
Save/Restore has to connect to many channels.  It could 

be very heavy load to IOCs and network to have each 
client having its own connection to all those channels.  A 
service can connect all these channels and monitor them 
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all the time.  Whenever a SCORE snapshot is requested, 
all data can be served up immediately. 

BPM Service 
BPM (Beam Position Monitor) service collects all the 

BPM data and can be buffered for clients to consume.  All 
BPM data should be time-correlated in one collection 
record.  Typical clients for this service are Orbit Display 
and Orbit Correction. 

Beam Loss Monitor Service 
This service is similar to the BPM Service but, instead, 

for monitoring Beam Loss Monitors (BLM).  A client for 
this service is display for beam loss across the entire 
machine. 

Steering Service 
This service provides continuous orbit correction 

solution.  It can be a back-end for transverse feedback.  
This service is a client of the BPM Service. 

Directory Service 
Directory Service provides information about the 

control system including its services.  It is mainly 
showing related information from the database with 
searchable capability. 

Alarm Service 
The service provides access to alarm information and 

alarm configuration data. 

Authentication Service 
Authenticates users, and authorizes access to services, 

devices, instrument access, various logbooks and even 
access to database are included in the Authentication 
Service.   

Logbook Service 
Logbook Service is to manage entries in the logbook. 

DATABASE 
The Global Database inherits major concepts and 

functionalities from IRMIS and its services.  IRMIS 
subschemas cover many areas such as devices 
(components) and documentation (electronic document 
Traveller).  In general, users do not need to access the 
database directly and all access is through services.  
Business logic is mostly embedded in the service layer to 
avoid complication at the database level.  For each 
subschema, there is at least one corresponding service for 
managing data access as well as additional data 
processing.  The Global DB has similar to IRMIS’ 
subschema structure. 

So far, there are 17 subschemas identified for the 
Global DB.  The “core” of this schema is the Installation 
which is based on accelerator design.  Within Installation, 
Components hold data for any entity or building blocks of 
FRIB such as magnets, power supplies, cavities etc.; 
Configuration then represents the entities that exist on the 

blueprint or configuration of the FRIB facility.  As 
mentioned above, one purpose to modularize the entire 
schema is to distribute work among collaborators. On the 
other hand, all subschemas are loosely coupled to ensure 
data correlated properly.  Note that the control data is 
mostly residing within control systems as EPICS records, 
not in the relational database.  However, the control 
systems should be initialized from the relational database.  
All the other subschemas are based on applications. 

FRIB Naming Convention will be supported in the 
Components subschema and service.  FRIB official 
parameter should be a by-product of the Installation 
subschema. 

A Brief description for each subschema is listed below. 
 Alarm – maintain alarm settings. 
 Authentication and authorization – user 
authentication, group and role mapping information. 
 Cables – cable connection information. 
 Directory Service – organized device information 
for easy lookup. 
 Installation – physical and logical information about 
the machine and its component systems. 
 Interlocks – interlock hierarchy or dependency. 
 Inventory – spare parts and stock items. 
 Lattice – position, length, default setting and other 
physics related information. 
 Logbook – electronic logbook entries. 
 Maintenance – preventive maintenance data and 
scheduling, failure analysis, and lifetime analysis. 
 Model – physics model data. 
 MPS – machine protection system (MPS) state 
dump, MPS faults for post-mortem analysis. 
 Operations – beam statistics, run hours, beam on 
target, shift summary, downtime, and bypass 
records. 
 Physics – results from physics applications or 
experiments. 
 PV – EPICS Process Variable (PV) information. 
 Save and restore – machine snapshot and restore 
condition (certain signals cannot be restored 
unconditionally). 
 Traveller – work flow control and process tracking 
for measurements, calibration and test data. 
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