
DEVELOPMENT STATUS OF
DATA ACQUISITION SYSTEM FOR LIPAC

H. Takahashi #, T. Kojima, K. Narita,
Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori, Japan

H. Sakaki, JAEA, Kizugawa, Kyoto, Japan
S. Komukai, Gitec Co. Ltd, Hachinohe, Aomori, Japan

Abstract
 The Control System for Linear IFMIF Prototype

Accelerator (LIPAc) consists of six subsystems; Central
Control System (CCS), Local Area Network (LAN),
Personnel Protection System (PPS), Machine Protection
System (MPS), Timing System (TS) and Local Control
Systems (LCS). The LIPAc provides deuteron beam with
beam power more than 1 MW, and this control system is
required the high reliability and usability to perform
various operation modes for a beam commissioning phase
[1]. To realize the usability operation, we started
developing of Data Acquisition System (DAC), which is
one of the important functions of CCS.

In this article, the development status of DAC for the
LIPAc is presented.

INTRODUCTION
The LIPAc consists of a part of sub-systems for the real

IFMIF Accelerator (in the future), and the LIPAc purposes
the engineering validations of these components.
Therefore, for the validations of each sub-system and the
activity of the real IFMIF Accelerator design, it is very
important to record the commissioning data of these
systems.

The Control system of the LIPAc constructs the remote
control, monitoring and data acquisition by using EPICS.
To archive the LIPAc operation’s data, we started
developing Data Acquisition System based on Relational
Database (RDB). The first design for the DAC of the
LIPAc control system is configured, I) to use PostgreSQL
for RDB and II) to improve a processing data rate, two or
more RDBs are installed. In addition, III) an independent
RDB for data retrieval (user interface) is performed in the
DAC. In this way, several RDBs for the DAC can behave
only one RDB against users.

BACKGROUND
The LIPAc consists of a 100keV injector equipped with

following 9 subsystems, that is an electron-cyclotron-
resonance type ion source (ECR-IS), a low energy beam
transport line (LEBT), 5MeV RFQ, the medium energy
beam transport line (MEBT), 9MeV eight half-wave-
resonator type superconducting linacs (SRF linac), a high
energy beam transport line (HEBT), beam diagnostic
system, a 1.2 MW CW beam-dump (BD), and RF
subsystems [2]. These subsystems are developed and
delivered by F4E (CEA, INFN, CIEMAT). And these will
be installed at Rokkasho site in Japan from 2013, except

SRF Linac that will be installed in summer 2016. At the
beam commissioning, there are following 4 operation
modes, “Injector (only)”, “Injector + RFQ”, “Injector +
RFQ + SRF Linac” and “LIPAc (Injector to BD)”, will be
planned from the spring of 2013 to the middle of 2017.

On the operation’s data acquisition since 2013, it
should be considered in the management and the search
because the data have important implications for the
design study of the real IFMIF Accelerator.

Therefore, we started design to the DAC for the LIPAc
from spring 2011, and also built the test bench to validate
our design.

DATA ACQUISITION SYSTEM
Target Performance
In the LIPAc, we use the EPICS based CCS and LCS.

Total number of EPICS record will be assumed to finally
be about 10,000. Then, we designed to the target
performance of the DAC is possible to acquire the 10,000
EPICS records per second in the first phase.

Requirement
However, the number of archived EPICS records will be

growing as the commissioning is progress. Then, the
DAC has to be constructed i) flexibility; it is able to
respond appropriately to the growth of archived data. In
addition, all operation data of the LIPAc is important to
design the real IFMIF Accelerator in the future. So, data
has to be managed with versatile-data-format which is not
performed in only the special environment. Therefore, the
DAC is also required ii) general versatility; it should
utilize a standard-data-format and an environment in a
database system.

Design
The DAC configuration is shown in Fig.1. To realize a

requirement “ii) general”, we decided the DAC is
configured using PostgreSQL which is a common. In
addition, to utilize a simple data format, one EPICS
record data is inserted to one data table which is not
perform the data compression and aggregation. In this
way, it is possible for users to utilize the data inserted in
RDB by the generalized “sql command”.
By the reasons of ,
a) the DAC is not needed large scale because the LIPAc

mainly consists of six subsystems,

 __

takahashi.hiroki@jaea.go.jp

THPPR004 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3972C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

b) it is important to make the
DAC management low cost.
So, we decided to use
PostgreSQL which is not a
commercial RDB (free RDB).

Next, to realize “i) flexibility”,
we designed that the DAC is
configured with several hardware
(Slave PC) to collect data and it is
easy to add the Slave PCs.
However, this configuration
makes a problem that users have
to understand some information to
search, for example, which EPICS
record data is archived in which
Slave PC. To resolve this problem,
PC to work user interface for data
search is added in the DAC. This interface PC (Master
PC) has a function to behave like as all data is inserted in
its own RDB. Using a Master PC, users need not
understand the information of the DAC configuration, and
it is possible for users to utilize the DAC as like only one
RDB.

SOFTWARE
In the DAC, the archived data means measurement data

(ai record with EPICS), status data (mbbi record with
EPICS) and waveform data (waveform record with
EPICS). At normal operation that is a steady state
operation, “status data” is relatively constant data.
However, in the transient state of subsystem, like the
machine trouble happens, the subsystem starts up and
shuts down, and so on. Therefore, it is important for the
status data of time stamp and the transient value when the
status changes. It is better that the status data is collected
by using EPICS record monitor function, because the
event is sent to a Slave PC only, likely the subsystem
status changes. Thus, in case of the status data archive,
the load of a Slave PC assumes to be high only transiently.
On the other hand, the measurement data is needed to be
archived not only the steady state, but also the transient
state. The load of a Slave PC assumes to be constantly
high and the amount of data becomes large.

The waveform data archive is difficult to estimate the
load of a Slave PC. Because this archive greatly depends
on the data size and the data archive cycle. Here, we
design and study only the method for data archive.

Therefore, we design and test about the data acquisition
of measurement data (ai record), mainly.

The Software configuration is shown in Fig. 2.

The Master PC
The Master PC works as the interface between users

and Slave PC. This PC has a “Management Table” to
manage the relation each EPICS record and each Slave
PCs. This table is inserted in IP address of Slave PC,
EPICS record name, start time of data archive and so on.
The sample of master table is shown Table. 1.

The “Interface App.” task (inter-task) works on the
Master PC (shown in Fig. 2). When this task received the
data search request (EPICS record name, start time and
end time for searching) from user, this task gets IP

Figure 2: Software Configuration of DAC.

Table 1: Sample of Management Table in Master PC
recordname recordtype effective starttime IP address dbname schemaname tablename

TEST:REC01 ai 0 2012/02/23 00:00:00 192.1.189.47 SlaveDB01 Schema01 table010223
TEST:REC02 ai 1 2012/02/24 00:00:00 192.1.189.47 SlaveDB01 Schema01 table02
TEST:REC03 ai 1 2012/02/24 00:00:00 192.1.189.47 SlaveDB01 Schema01 table03
TEST:REC04 ai 1 2012/02/24 00:00:00 192.1.189.47 SlaveDB01 Schema01 table04
TEST:REC05 ai 1 2012/02/24 00:00:00 192.1.189.47 SlaveDB01 Schema01 table05
TEST:REC01 ai 1 2012/02/24 00:00:00 192.1.189.47 SlaveDB01 Schema01 table010224

Figure 1: Configuration of Data Acquisition System.

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPR004

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-115-1

3973 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

address of Slave PC which archives the requested EPICS
record data from the master table. Next, this task sends
“sql command” to search the requested data to a Slave PC.
A Slave PC searches and returns the result of data search
to the Master PC. Finally, inter-task sends the data from a
Slave PC to user.

Slave PC
A Slave PC mainly works to collect data and archive

data. In the test bench, “Data Monitor” task (mon-task)
and “Data Writer” task (writer-task) run on this PC
(shown in Fig. 2). The mon-task makes links between
EPICS record, and receive the data from EPICS IOCs.
The writer-task inserts the collected data to RDB.

The mon-task gets the EPICS’s record names which
this task should collect from the master table in the
Master PC (this is interface PC for users), when this task
starts up. Next, this task creates the tables to insert the
collected data. The table is created every EPICS record.
(If one table exists corresponding EPICS record, this task
will not create a table.) The table structure of Slave PC is
shown in Fig. 3.

The mon-task received the measurement data (ai
record) using EPICS monitor function with EPICS IOCs.
And, this task buffers the received data by the event of
monitor function and outputs the data queues to common
memory every 1 second. In addition, at the measurement
data, the cyclic data archive is necessary. However, the
event is not output from IOCs when the measurement data
does not change. Then, this task outputs the last data
queue every 1 second if the event of one measurement
data is not received. On the other hand, the writer-task
inserts the data (data queues) on common memory to each
data table on RDB every 1 second.

Here, basically, “Data Monitor” is able to be also
utilized for data acquisition of “status data (mbbi)” and
“waveform data (waveform)”.

And, these data search on a Slave PC and the Master
PC is performed using PostgreSQL standard functions.

TEST BENCH
The performances of data archive and data search were

tested at the test bench of DAC. Test bench was

configured one Master PC, three Slave PCs and some
EPICS IOCs. The specifications of hardware for this test
bench are shown in Table 2.

Table 2: Specifications of Master PC and Slave PC

Model DELL PRECISION T5400

OS Red Hat Enterprise Linux 5
Desktop (64bit)

Memory Size 7.8 GB
Swap Size 9.7 GB

PostgresSQL Version 9.1

Result of a Slave PC Lifetime Test
First, we test a Slave PC which archives 3,000 ai

records / 1sec. However, unfortunately the data queue was
over flow and all data is not inserted to RDB after about
77 hours run. Next, the amount of data is changed from
3,000 to 2,000 ai records / 1 sec. In this parameter, the
data queue was not over flow and a Slave PC continued to
archive all data over 1 month.

Result of the Master PC Performance Test
The Master PC works like as one RDB. The Master PC

is able to receive the request to search max 5 EPICS
records. The Master PC sends requests to each target
Slave PC, and receives each reply. Master PC successes to
return these requested data to user as array data.

CONCLUSION
In this article, we confirmed that Slave PC have the

performance to archive 2,000 ai record / 1sec. From this
result, it is possible that the target performance of the
DAC (10,000 records / 1sec) is achieved by the DAC is
configured using 5 Slave PCs. It shows that this DAC has
the performance corresponding to increase the archive
data. And, in reaction to searching data from user, it is
cleared that the DAC works like as one RDB with the
Master PC. In this result, we shows the proposed the
DAC has the enough performances of data archive and
data search for the LIPAc,

At present, we have just started confirming that “Data
Monitor” is able to be also utilized for data acquisition of
“status data (mbbi)” and “waveform data (waveform)”.
Next, we plan the improvement of the Master PC and
table format to archive the data for a long period. In
addition, we will develop the CSS plug-in to display the
archived data in this DAC.

REFERENCES
[1] H .Takahashi al., “Overview of the control et

system for the IFMIF/EVEDA Accelerator”
Proceedings of the 6th Annual Meeting of Particle
Accelerator Society of Japan, Tokai, Japan

[2] A. Mosnier et al., “The Accelerator Prototype of the
IFMIF/EVEDA Project”, Proceedings of IPAC’10,
MOPEC056, Kyoto, Japan

Field Definition

Index Definition

Figure 3: Table Structure of Slave PC.

THPPR004 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3974C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

