
AUTOMATED EXECUTION AND TRACKING OF THE LHC
COMMISSIONING TESTS

K. Fuchsberger, V. Baggiolini, M. Galetzka, R. Gorbonosov, M. Pojer,
M. Solfaroli Camillocci, M. Zerlauth, CERN, Geneva, Switzerland

Abstract

To ensure the correct operation and prevent system fail-
ures, which can lead to equipment damage in the worst
case, all critical systems in the Large Hadron Collider
(LHC), among them the superconducting circuits, have
to be tested thoroughly during dedicated commissioning
phases after each intervention. In view of the around 7,000
individual tests to be performed each year after a Christ-
mas stop, a lot of effort was already put into the automation
of these tests at the beginning of LHC hardware commis-
sioning in 2005, to assure the dependable execution and
analysis of these tests. To further increase the productivity
during the commissioning campaigns and to enforce a more
consistent workflow, the development of a dedicated testing
framework was launched. This new framework is designed
to schedule and track the automated tests for all systems of
the LHC and will also be extendable, e.g., to beam com-
missioning tests. This is achieved by re-using different,
already existing execution frameworks. In this paper, we
outline the motivation for this new framework and the re-
lated improvements in the commissioning process. Further,
we sketch its design and present first experience from the
re-commissioning campaign in early 2012.

MOTIVATION
About 7,000 individual tests have to be performed each

year after a long maintenance stop around Christmas, to
ensure proper functionality of the superconducting circuits
of the LHC. In view of this large amount of tests, a lot
of effort was put in automation of tests, starting from the
beginning of hardware commissioning in 2005 [1]. The
status in 2011 was the following:

• The test procedures for all the superconducting cir-
cuits were formulated in so-called ’sequences’ which
can be executed by a dedicated tool, the Hardware
Commissioning Sequencer (HWC Sequencer) [2].

• Dedicated Analysis tools (developed in LabView R⃝)
were provided to verify the data resulting from the
tests. Some of them were automatized.

• The results of the tests could be displayed through a
web interface (written in PHP).

The whole system had been grown over time and involved
a lot of individual systems, which were loosely coupled to-
gether and based on different technologies and sometimes
hard to maintain. This is why it was decided, in summer
2011, to review the whole testing system and streamline
the developments in one direction.

ACCTESTING FRAMEWORK
The initial focus of the new framework was the execu-

tion and tracking of tests for LHC hardware commission-
ing. Nevertheless, it soon turned out that a more general ap-
proach was appropriate. The goal was then to create a gen-
eral framework for the execution and tracking of tests for
accelerator systems (’AccTesting’ in the following). The
framework must be able to deal with a high workload and
enable its users to work in parallel. Furthermore, it must
prevent execution conflicts and provide the current test sta-
tus information to all of its users.
Overview

A general overview over the architecture of the frame-
work can be seen in Fig. 1. The central point is the Ac-
cTesting server. The test execution and analysis results
are stored in a database that only the server may access.
The server itself is not aware of any specifics of the tests it
handles. The test execution servers and the result analysis

Acctesting
GUIs

Acctesting Server

Acctesting
Database

Test Execution Servers

HardwareResult analysis
components

Figure 1: Components of the AccTesting framework.
components are connected to the server with a plug-in like
system. Each of them can handle a specific type of tests. If
the main server wants to start the execution or analysis of
a test, it provides each of the plugged-in test handlers with
the test information, which then in turn can decide if they
are able to handle the test. Once a test handler has accepted
a test and started the execution or analysis, the main server
will regularly poll it to retrieve the test status and result.

The AccTesting server is controlled by several users
through the use of a specific Graphical User Interface
(GUI). The AccTesting GUI displays all the information
about the currently executing tests and scheduled tests. In
this sense it replaces the former test tracking web pages.
Furthermore, it allows to enqueue a scheduling request to
the AccTesting server directly from within the test plan
view. An example screenshot of the GUI is shown in Fig. 2.

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPP009

04 Hadron Accelerators

A04 Circular Accelerators

ISBN 978-3-95450-115-1

3743 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 2: A screenshot of the graphical user interface
(GUI) for the AccTesting framework.

The AccTesting main server must be very robust. It has
to deal with unexpected behavior from its plugged-in test
handlers, errors in the control GUI, incomplete test results
and many other issues like a sudden crash of the virtual
machine. Several mechanisms have been implemented to
deal with these situations:

• The server itself constantly serializes all important
data (which are not persisted in the database), as well
as all of its test handlers, and writes the serialized in-
formation on the hard disk. In the case of a sudden
server crash, it will read these serialized data and is
able to start right where it stopped. Furthermore, this
is a great help when the server has to be restarted after
applying a patch, because it can be done in the middle
of the work.

• Unexpected behavior from any test handler compo-
nent results in the immediate abortion of the test.
The aborted tests are collected in a special pool from
where they can be easily restarted.

• Incomplete or inconsistent results are a problem if not
treated correctly, because they are used to determine
the status of a test and therefore its next steps in the
AccTesting framework. In the worst case, a failed test
with inconsistent results could be labeled successful
and allow the execution of further tests. To overcome
this problem, the status of each test is determined by
a complex finite state machine that uses all available
information about the test every time.

• Failures in the GUI, or even malicious hacking at-
tempts, are not easy to detect, but the main server
checks all the received data for consistency with its
own database and prevents the execution of any com-
mands if there is a mismatch.

Scheduling
The scheduling algorithm in the server is responsible

for executing the enqueued tests in the most efficient way,
while respecting all the constraints and preconditions. It
has to be fast, reliable and easy to understand. The cur-
rent implementation of the scheduling algorithm tries to
find an arbitrary combination of tests that can be executed
right away. Although the algorithm is rather fast, as it re-
quires O(n) memory and runs in O(n2) time, it is unable

to plan ahead and chooses the tests to execute arbitrarily.
Therefore, it might create suboptimal schedules. A better
scheduling algorithm, without these shortcomings, is cur-
rently under development. A promising candidate is an al-
gorithm based on heuristic repair. Other alternatives could
be approaches based on tree search or ant colony optimiza-
tion.

Advantages
The new framework is an improvement to the old archi-

tecture in the following ways:

• It provides a way for users to work in parallel on the
tested systems. Before, this involved a lot of coordi-
nation where each user was only allowed to work on a
specific working-set of systems.

• It is a central point for all the test related data. Be-
fore, all the systems directly accessed the database and
communicated with each other, leading to a tight cou-
pling of these systems.

• The system is easily extensible without any need to
change the database or existing code.

• It features an automated scheduling which is able to
automatically consider even complex test constraints.
Before, each user had to have these constraints in
mind when scheduling a test, what often resulted in
failed tests.

SOME STATISTICS
Figure 3 shows the number of started hardware commis-

sioning tests per day throughout the years 2008 to 2012.

Figure 3: Executed tests per day between 01 Jan 2008 and
30 April 2012.

The initial tests were widely distributed over most of the
year in 2008 and also a long commissioning campaign took
place after the repairs in 2009. Two smaller campaigns
were performed after the Christmas shutdowns in the be-
ginning of 2011 and 2012 [3]. For the following analysis
we consider the time ranges of the individual campaigns as
defined in Table 1. The table also summarizes the number
of shifts per campaign. HWC shifts were identified from
the data as LHC-shift periods in which at least 5 tests were
executed.

Table 2 shows some statistics about tests executed during
the different hardware commissioning campaigns. Accord-
ing to the numbers in the table, surprisingly the percentage

THPPP009 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

3744C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

04 Hadron Accelerators

A04 Circular Accelerators



Table 1: Summary of main LHC hardware commissioning
campaigns between 2008 and 2012.

Name Start Date End Date #Shifts

HWC 2008 2008-01-01 2008-09-20 225
HWC 2009 2009-06-01 2009-11-19 175
X-Mas 10/11 2011-01-01 2011-03-15 48
X-Mas 11/12 2012-01-01 2012-03-15 43

of failed tests stayed constant w.r.t. last year; the number
of tests which failed because of a timeout during the ini-
tialization of the test sequence could be reduced by a factor
of 10. This kind of failures are mostly provoked, if a test
on a circuit is started, when the equipment is not ready (e.g.
locked, or QPS not ready). Such situations were eliminated
this year, because the new scheduling algorithm respects all
these constraints and will never run a test on a locked cir-
cuit, for example. It was expected that also the average time
between executions of different tests on the same system
would be drastically reduced, because the scheduler would
automatically start new tests as soon as the preconditions
are fulfilled. This assumption could not be confirmed by
the actual statistics data. One major cause for this incon-
clusive result is, that the time between tests on one circuit
turns out to be mainly dominated by the analysis time.

Table 2: Test statistics for different HWC Campaigns
(’#T/#S’: Average number of tests per shift; ’% FTO’: per-
centage of failed tests that timed out).

Campaign #Tests #T/#S % failed % FTO

HWC 2008 17377 76.7 19.8 21.3
HWC 2009 15186 86.4 19.2 40.6
X-Mas 10/11 6977 144.8 16.7 47.8
X-Mas 11/12 6856 158.9 16.6 4.9

In the following, only data from the 2012 campaign is
used, since this was the first time, when the end time of
the analysis was also stored in the database. The average
execution- and analysis-times for several test types are plot-
ted in Fig. 4, together with the respective average execution
times. Hereby, the execution time is considered as the time
between start of the test sequence and termination of the
test sequence. The analysis time is considered to be the
time between the termination of the sequence and the re-
ception of the analysis result.

For some of the test types, automatic analysis modules
are already available (All PIC2 tests and PNO.a1) which
shorten the analysis time drastically. Nevertheless, if the
automatic analysis considers the test as failed, then the test
has to be analyzed manually. This is one reason why for
the PIC2 tests and PNO.a1 the analysis of successful tests
is much faster than for failed tests. For other tests (e.g.
PNO.d1/c2/a7), the analysis times for successful and failed
tests are very similar. This already shows the necessity
for more automatic analysis, which can be emphasized by
looking at the total times spent in analysis for the different

Figure 4: Average analysis times.

test types, as shown in Fig. 5. Again the PNO tests stick out
here, except the automated PNO.a1, whose analysis time is
already similar to the execution time.

Figure 5: Total time spent in analysis per test type.

SUMMARY AND OUTLOOK
The execution for LHC hardware commissioning tests

was reviewed in 2011 and the implementation of a general
framework for the execution and tracking of tests for accel-
erator systems was started. The system consists of a central
server, which orchestrates the testing process and is easily
extensible by plugin-in like modules. This framework takes
care of respecting all preconditions and constraints, which
had to be kept in mind by the users before.

Next steps for this framework will include a stream-
lining of the database design, further improvement of the
scheduling algorithm, the implementation of more auto-
matic test analysis modules and the possibility to easily edit
test plans.

REFERENCES
[1] B. Bellesia et al., “Information Management within the LHC

Hardware Commissioning Project”, proc. of PAC09, Vancou-
ver, BC, Canada.

[2] V. Baggiolini et al., “A Sequencer for the LHC Era”, proc. of
ICALEPCS2009, Kobe, Japan.

[3] M. Pojer et al., “Studies on the LHC Superconducting Cir-
cuits and Routine Qualification of Their Functionalities”,
these proceedings.

Proceedings of IPAC2012, New Orleans, Louisiana, USA THPPP009

04 Hadron Accelerators

A04 Circular Accelerators

ISBN 978-3-95450-115-1

3745 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


