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Table 1: Parameters of the Two Cyclotrons 

 TAMU 100 TAMU 800 

 inject ex-
tract 

inject ex-
tract 

 

Energy 2.5 100 100 800 MeV 
Orbit radius  0.66 4.6 3.8 7.6 m 

Dipole field 
in sectors 

1.5 .37 .98 .93 T 

Beam aperture 4.6 4.6 cm 

# rf cavities 2 10  

Frequency 100 100 MHz 

rf harmonic 23 19  

# orbits 35 35  

ing aperture to each orbit and prevents direct losses on 
QFCs and cavities. 

The QFC dipole windings are used to trim for isochro-
nicity, and also to provide a strong septum at both injec-
tion and extraction so that both can be accomplished 
without interception of beam tails. 

QUARTER-WAVE RF CAVITIES 
The rf cavities for a high-current, high-energy cyclotron 

pose a particular challenge, because the entire structure 
must fit within the 95 cm vertical spacing between cyclo-
trons in the flux-coupled stack, and it must operate with 
high power efficiency both for economics and because it 
would be problematic to remove large structure power 
from such a confined space.  

Fig. 5 shows the superconducting quarter-wave slot 
cavity that we have designed for use in both the injector 
and high-energy cyclotrons.  The top and bottom lobes of 
the structure are end-coupled, which stabilizes the 
accelerating mode with modest in/out extent.  Each lobe 
is driven by a linear array of loop couplers, each driven 
by a high-efficiency isolated solid-state rf power source. 

Cavities are configured in 10 of the 12 gaps between 
sectors (1.24 m gap space).  One gap is reserved for a 3rd 
harmonic cavity.  The cavities operate at 4.5 K.  Fringe 
dipole field is suppressed by shield plates so that the field 
at the Nb cavity is <3 T. 

  APPLICATION FOR ADS FISSION 
Our primary motivation in developing the SFC is for its 

use as a proton driver for ADS fission [1].  The 10 mA 
beam of each cyclotron is chopped as it is injected into 
TAMU100, and then separated into three beams after 
extraction from TAMU800, so that a 4-stack of cyclotrons 
can produce 12 2.7 MW beams.  Each 2.7 MW proton  
beam can drive an 80 MWth ADS molten salt core, fuelled 
entirely from the transuranics extracted from spent nucle-
ar fuel (SNF). The 12 cores, totalling 1 GWth, would burn 
all of the transuranics and long-lived fission products in 

Figure 4: Lattice functions for the extraction orbit for the 
example tune are shown in Figure 2. 

Figure 5: Half-section of the 100 MHz quarter-wave slot 
cavity for SFC. 

the SNF from a conventional GWe power reactor [1].  
This capability, unique among the many methods for fis-
sion, offers the opportunity to close the nuclear fuel cycle 
and provide a path to green nuclear energy.  
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