
HIGH-PERFORMANCE BEAM SIMULATOR FOR THE LANSCE LINAC∗

X. Pang† , L. Rybarcyk, and S. A. Baily
Los Alamos National Laboratory, NM, 87545, USA

Abstract

A high performance multiparticle tracking simulator is
currently under development at Los Alamos. The heart
of the simulator is based upon the beam dynamics simu-
lation algorithms of the PARMILA code, but implemented
in C++ on Graphics Processing Unit (GPU) hardware using
NVIDIA’s CUDA platform. Linac operating set points are
provided to the simulator via the EPICS control system so
that changes of the real time linac parameters are tracked
and the simulation results updated automatically. This sim-
ulator will provide valuable insight into the beam dynamics
along a linac in pseudo real-time, especially where direct
measurements of the beam properties do not exist. Details
regarding the approach, benefits and performance are pre-
sented.

INTRODUCTION

The LANSCE accelerator complex is a multi-beam,
multi-user facility that provides high-intensity H+ and H-
particle beams for a variety of user programs. At the heart
of the facility is a room temperature linac that is comprised
of a 100-MeV drift tube linac and an 800-MeV coupled
cavity linac. During routine operation of the facility, due
to the limited number of diagnostic tools, very limited in-
formation can be obtained about the beam dynamics inside
of the accelerator. Linac operational set points are adjusted
with a goal of maintaining minimal beam loss. However,
without the detailed knowledge of the beam distribution
and the effect of the adjustments on it, these changes can
potentially lead to degradation in beam quality and higher
losses downstream. A more desirable situation would be
one where knowledge of the beam distribution along the
linac is available in pseudo real time to aid in the optimiza-
tion of the linac operation and beam performance.

For these reasons we are pursuing a high performance
beam dynamics simulator that when linked to the acceler-
ator control system will track changes to system param-
eters and in rapid response provide valuable insight into
the beam motion and quality. The core of this simula-
tor is based upon the multi-particle beam dynamics code
PARMILA [1], but implemented in C++ using NVIDIA’s
CUDA [2] technology for GPU. The GPU hardware was
chosen for its superior parallel computing performance
and cost efficiency. Beam dynamics algorithms are re-
cast to maximize the benefit of GPU architectures and a
substantial speedup was obtained. So far, the simulator
has demonstrated its capabilities of soliciting real-time op-
erational parameters through the accelerator control sys-

∗Work supported U.S. Dept. of Energy, NNSA under contract DE-
AC52-06NA25396

† xpang@lanl.gov

tem, quickly updating the simulation and displaying user-
requested beam quality metrics at any location along the
accelerator.

CODE STRUCTURE

Figure 1: Top level code structure and data flow.

Shown in Fig. 1 is the top level code structure of the
simulator. On the server side, a DataServer reads in the
real-time linac set points from the EPICS control system
and pipes the data into a SQL database to convert the set
points into model parameters that can directly be used by
the SimulationEngine on the client side. BeamLine serves
as a bridge between server and client. It resides in the
mapped pinned memory on GPU and CPU to achieve the
highest memory bandwidth through PCIe bus and facili-
tates information sharing. OpenGL graphics rendering was

Figure 2: Left: EPICS control sliders. Right: simula-
tion outputs including phase spaces, beam centroids, sizes,
emittances, distribution histograms and loss.

handled by the Graphics module on the client side. Fig. 2 is
a screen shot of the simulation outputs shown side by side
with the EPICS control channels for quadrupole mangets

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOEPPB012

06 Instrumentation, Controls, Feedback and Operational Aspects

T05 Beam Feedback Systems

ISBN 978-3-95450-115-1

103 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



and RF phases and amplitudes. The output quantities in-
clude beam centroid, size, emittance, phase space, distri-
bution and loss. The output plots can be updated rapidly in
response to any change to the EPICS control channels.

BEAM DYNAMICS ALGORITHM

The beam dynamics algorithms of this simulator are
based on the algorithms used in PARMILA, but recast to
maximize the benefits of the GPU hardware. Transfer maps
were used to transport beam through different linac ele-
ments. Along the linac, space charge kicks are applied
to the beam at appropriate locations. The space charge
routines which were implemented in PARMILA are 2D
SCHEFF [3] and 3D PICNIC [4]. In SCHEFF, beam dis-
tributions are assumed to be cylindrically symmetric. And
the mesh is set up in the radial and longitudinal directions.
A SCHEFF routine follows four steps to calculate the space
charge kicks for particles: computing the electric field ta-
ble for the entire mesh based on the relative positions of ev-
ery two individual cells, putting particles on the mesh and
calculating the charge density distribution, calculating the
electric field at every node on the mesh, interpolating and
applying the electric force on every particle. The PICNIC
routine follows a similar procedure, however implemented
using a 3D mesh. This routine is currently not included in
the simulator.

PERFORMANCE

To compare the performance of the codes running on
GPU and CPU, we picked a simple beam line that consists
of two quadrupole magnets separated by a RF accelerating
gap as a test case. A space charge kick is applied at the
center of the RF gap using the 2D SCHEFF space charge
routine. The performance tests were conducted on a Super-
Micro Workstation running a Scientific Linux 6.1 OS. It is
equipped with an Intel Xeon E5520 quad-core CPU, 32GB
of RAM, a NVIDIA Quadro NVS 290 GPU, and a GeForce
GTX 580 GPU. The GTX580 GPU which has 512 cores,
3GB of global memory, and 48KB of configurable shared
memory was used for the performance tests. The program-
ming platform adopted was CUDA 4.0.

Overall

Figure 3 shows the dramatic performance difference be-
tween GPU and CPU. Codes on GPU run significantly
faster than their counterparties on CPU. From Fig. 4 one
can see the substantial speedup gained by the GPU code
for both the space charge and the transport routines. The
overall speedups of the GPU code range from 20 to al-
most 100. With more particles being used in the simulation,
more speedup can be achieved through the thread level par-
allelism (TLP). However, the speedups of the space charge
routine are less than those of the transport due to the fact
that the electric field table calculations which count for a
substantial part of the space charge routine do not depend

Figure 3: Semi-log plot of the computing times on CPU
and GPU.

Figure 4: Speedup gained by GPU.

on the number of particles being used for the simulation.
This is clearly shown in Fig. 5 where the computation times
of four major kernels in the SCHEFF space charge rou-
tine are compared. As particle number increases, the par-
ticle number dependent kernels of the space charge routine
take a larger portion of the whole computing time, there-
fore boost the speedup of the entire space charge routine as
indicated by Fig. 4.

It only takes the simulator on the GPU 0.422 second
to push 32K H- particles through the LANSCE 100 MeV
DTL which consists of 165 RF gap (space charge kick at
every gap), 135 quadrupole magnets and 37 drifts.

Space Charge Routines

SCHEFF The performance of a space charge routine
can be critical for the performance of the overall program.
The SCHEFF space charge routine claims 38% to 60% of
the entire computing time on CPU, and 47% to 83% of the
time on GPU. A SCHEFF routine on the GPU consists of
four major kernel functions which correspond to four cal-
culation steps of the SCHEFF routine. Depicted in Fig. 5,
the kernel that calculates the final electric field table for

MOEPPB012 Proceedings of IPAC2012, New Orleans, Louisiana, USA

ISBN 978-3-95450-115-1

104C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T05 Beam Feedback Systems



Figure 5: Computing times of SCHEFF kernels.

every node on the mesh (the blue bar) and the one that cal-
culates the charge density (the green bar) can potentially
be the bottlenecks of the entire routine. Data prefeching
from GPU’s global memory into the fast shared memory
was employed to help prevent the bandwidth limit in the
final electric field table calculation. However, the kernel is
instruction limited due to the great amount of double preci-
sion instructions issued. Algorithm modification might be
necessary in order to further improve the performance. In
the charge distribution calculation, the use of atomic addi-
tion could potentially hurt its performance especially with
condensed beam distributions. As an alternative, data de-
composition and block reduction techniques are currently
under test to get more consistent performance from this ker-
nel.

Figure 6: Computing times for 3D Poisson solver and
SCHEFF.

Poisson Solver For more general beam distributions,
space charge routines based on Poisson solvers lead to
more accurate simulation results. Therefore we also imple-
mented a space charge routine using a 3D Poisson solver.

Figure 7: Speedup gained by GPU for 3D Poisson solver.

In Fig. 6, we compare the performance of a SCHEFF rou-
tine (mesh size 32 × 64) with that of a 3D Poisson solver
(mesh size 32 × 32 × 64) using GPU for varying particle
numbers. The computing time increments were limited by
50% in our test cases. Further investigation is needed to
decide the tradeoff between accuracy and computing time.
At the heart of the Poisson solvers are the FFT routines. On
GPU, the CUFFT library [5] was employed while on CPU,
FFTW library [6] was used for the performance tests. Fig-
ure 7 compares the speedups achieved by the FFT routine,
non-FFT part of the solver, and the entire solver. As the
size of the mesh increases, the overall speedup of the solver
goes up ranging from 30 to 45. It is eventually limited by
the speedup obtained on the FFT routine.

CONCLUSIONS

A high performance multi-particle simulation tool was
developed on GPU hardware using NVIDIA’s CUDA plat-
form. It can track any real-time operational parameter
change in an accelerator, update simulations rapidly and
display user-requested beam quality metrics. A substantial
speedup was obtained by using the GPU hardware. This
simulator will provide valuable insights into the beam dy-
namics inside an ion linac especially where direct beam
measurements are not available.

REFERENCES

[1] H.Tadeda, J. Billen, PARMILA, LANL publication, LA-UR-
98-4478, 2005

[2] NVIDIA, NVIDIA CUDA C Programming Guide, Version
4.0, 2011

[3] P. Lapostolle et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 379, 21 (1996)

[4] N. Pichoff et al., Proceedings of the International LINAC
Conference, Chicago, IL, 1998, p. 141.

[5] NVIDIA, CUFFT Library Programming Guide, 2011

[6] M. Frigo, S.G. Johnson, FFTW for version 3.3.2, 2012

Proceedings of IPAC2012, New Orleans, Louisiana, USA MOEPPB012

06 Instrumentation, Controls, Feedback and Operational Aspects

T05 Beam Feedback Systems

ISBN 978-3-95450-115-1

105 C
op

yr
ig

ht
c ○

20
12

by
IE

E
E

–
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


