Paper | Title | Page |
---|---|---|
TUPC042 | First Beam to FACET | 1093 |
|
||
Funding: This work was supported by the Department of Energy contract DE-AC02-76SF00515. The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new FACET facility while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). FACET is a new experimental facility constructed in the linac tunnel that can transport, compress, and focus electron bunches to support a variety of accelerator R&D experiments. In this paper, we describe our first experiences with the operation of the linac for this new facility. |
||
WEOAB02 | FACET: The New User Facility at SLAC | 1953 |
|
||
Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 um. A final focusing system can produce beam spots 10um wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. |
||
![]() |
Slides WEOAB02 [4.772 MB] | |
THPZ003 | The SuperB Project: Accelerator Status and R&D | 3684 |
|
||
The SuperB collider project has been recently approved by the Italian Government as part of the National Research Plan. SuperB is a high luminosity (1036 cm-2 s-1) asymmetric e+e− collider at the Y(4S) energy. The design is based on a “large Piwinski angle and Crab Waist” scheme already successfully tested at the DAΦNE Phi-Factory in Frascati, Italy. The project combines the challenges of high luminosity colliders and state-of-the-art synchrotron light sources, with two beams (e+ at 6.7 and e- at 4.2 GeV) with extremely low emittances and small beam sizes at the Interaction Point. As unique features, the electron beam will be longitudinally polarized at the IP and the rings will be able to ramp down to collide at the tau/charm energy threshold with one tenth the luminosity. The relatively low beam currents (about 2 A) will allow for low running (power) costs compared to similar machines. The insertion of beam lines for synchrotron radiation users is the latest feature included in the design. The lattice has been recently modified to accommodate insertion devices for X-rays production. A status of the project and a description of R&D in progress will be presented. | ||