Paper | Title | Page |
---|---|---|
MOPC020 | Development of an S-band Multi-cell Accelerating Cavity for RF Gun and Booster Linac | 110 |
|
||
Funding: Work supported by JST Quantum Beam Program We have been developing a photocathode rf gun. The rf gun with multi cell can produce a high energy electron beam, so it may be used for numerous applications such as medicine and industry. At Laser Undulator Compact X-ray source (LUCX), we have developed a compact X-ray source based on inverse Compton scattering. Using a multi cell rf gun will make possible for the X-ray source to use for such applications. S-band 3.5 cell rf electron gun which is 20 cm long can produce more than 10 MeV electron beam. According to the simulation, it is said that the emittance of 3.5 cell rf gun is as low as that of 1.6 cell rf gun. The electromagnetic design has been performed with the code SuperFish, and the particle tracing by Parmela. The new rf gun is already installed and produced a high quality electron beam with energy of more than 10 MeV. As a consequence of the substantial efforts of developing rf cavity, we decide to make a compact RF accelerating structure with more cell for achieving a smaller system. The measurement results of using the 3.5 cell rf gun, the design of 12 cell booster cavity, and current status of 12 cell cavity manufacturing will be presented at the conference. |
||
MOPC146 | Development of Timing Distribution System with Femto-second Stability | 421 |
|
||
A timing distribution system with femto-second stability has been developed for the RF synchronization of accelerator and the laser synchronization of the pump-probe experiments. The system uses a phase stabilized optical fiber(PSOF) and an active fiber length stabilization. The PSOF has 5 ps/km/degC of the temperature coefficient. The active fiber length stabilization uses the phase detection of the round-trip sinusoidal wave and the fiber stretcher for the compensation of the fiber length. In this paper, we present the test results on a 500 m long signal distribution. The preliminary results of the timing stability are 20 fs at several minutes and 100 fs at four days, respectively. | ||
TUPC016 | Status of the ATF2 Lattices | 1027 |
|
||
The latest status for the ATF2 Nominal and Ultra-low beta lattices designs obtained to minimize the detrimental effect of the measured multipoles are presented in this paper. A set of correction knobs for the most important aberrations at the IP have been obtained for both lattices in order to perform the tuning under realistic imperfections. Starting from the tuned ATF2 Nominal lattice a squeeze sequence reducing betay is performed to reach the ultra-low beta lattice. Tuning results are shown for both options. | ||
TUPC059 | Study on Energy Compensation by RF Amplitude Modulation for High Intense Electron Beam Generated by a Photocathode RF-Gun | 1132 |
|
||
Funding: Work supported by JSPS Grant-in-Aid for Scientific Research(A)10001690 and JST Quantum Beam Program. At Waseda University, we have been studying a high quality electron beam generation and its application experiments with a Cs-Te photocathode RF-Gun. To generate more intense and stable electron beam, we have been developing the cathode irradiating UV laser which consists of optical fiber amplifier and LD pumped amplifier. As the result, more than 100 multi-bunch electron beam with 1nC each bunch charge was obtained. However, it is considered that the accelerating voltage will decrease because of the beam loading effect. So we have studied the RF amplitude modulation technique to compensate the beam energy difference. The energy difference will caused by transient accelerating voltage in RF-Gun cavity and beam loading effect. As the result of this compensation method, the energy difference has been compensated to 1%p-p, while 5%p-p without compensation. In this conference, we will report the details of energy compensation method using the RF amplitude modulation, the results of beam experiments and the future plans. |
||
TUPC158 | Micron-scale Laser-wire at the ATF-II at KEK Commissioning and Results | 1401 |
|
||
We present the first results from the commissioning of the upgraded laser-wire experiment at the Accelerator Test Facility 2 (ATF2) at KEK. A new laser transport line and beam diagnostics were used to collide 150 mJ, 167 ps long laser pulses with 1.28 GeV, 30 ps long electron bunches to measure the vertical transverse size. Additionally, a new detector was installed with a reduced area for lower background. Initial scans showing a convoluted beam size of 19.2 ± 0.2 microns were used to tune the electron beam optics and reduce this down to 8.1 ± 0.1 microns. Laser pulse energy and charge dependency were investigated showing a linear relationship in both with a minimum laser energy of 20 mJ required for observable signal with this laser and setup. | ||
WEOBB01 | Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation | 1964 |
|
||
Optical Transition Radiation (OTR) appears when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in numerous facilities worldwide. The resolution of the conventional monitors is defined by the Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. For small electron beam dimensions, the PSF form significantly depends on various parameters of the optical system like diffraction of the OTR tails, spherical and chromatic aberrations, etc. In our experiment we managed to create a system which can practically measure the PSF distribution and using a new self-calibration method we are able to calculate transverse electron beam size. Here we represent the development, data analysis and novel calibration technique of a sub-micrometer electron beam profile monitor based on the measurements of the PSF shape, which OTR visibility is sensitive to micrometer electron beam dimensions. | ||
![]() |
Slides WEOBB01 [2.506 MB] | |
WEPC051 | Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring | 2127 |
|
||
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of e+e− colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-Perot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and will be used to produce an intense flux of polarized gamma rays by Compton scattering. For electrons at the energy of the ATF (1.28GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed. Possible methods to observe the effect of Compton scattering on the ATF beam are proposed. | ||
TUPC119 | A Comprehensive Study of Nanometer Resolution of the IPBPM at ATF2* | 1296 |
|
||
Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515. High-resolution beam position monitors (IPBPMs) have been developed in order to measure the electron beam position at the focus point of ATF2 to a few nanometers in the vertical plane. To date, the IPBPM system has operated in test mode with a highest demonstrated resolution of 8.7 nm in the ATF extraction line during 2008. After expected noise source calculations there still remains 7.9 nm of noise of unexplained origin. We summarize the experimental work on the IPBPM system since this measurement and outline the possible origins of these sources. We then present a study plan to be performed at the ATF2 facility designed to identify and to improve the resolution performance and comment on the expected ultimate resolution of this system. |
||
TUPC161 | Cavity Beam Position Monitor System for ATF2 | 1410 |
|
||
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance. | ||
TUPO002 | High Flux Polarized Gamma Rays Production: First Measurements with a Four-mirror Cavity at the ATF | 1446 |
|
||
Funding: ANR, IN2P3 The next generation of e+/e- colliders will require the production of a very intense flux of gamma rays to allow polarized positrons to be produced in sufficient quantities. To demonstrate that this can be achieved a four-mirror cavity has recently been installed at the Accelerator Test Facility (ATF) at KEK to produce a high flux of polarized gamma rays by inverse Compton scattering. A four-mirror non-planar geometry is used to ensure the polarization of the gamma rays produced. The main mechanical features of the cavity are presented. A fibre amplifier is used to inject about 10W in the high finesse cavity with a gain of 1000. A digital feedback system is used to keep the cavity at the length required for the optimal power enhancement. First preliminary measurements show that on some beam crossings the interactions produce more than 25 photons with an average energy of about 24 MeV. Several upgrades currently in progress are described. |
||