Author: Tecker, F.
Paper Title Page
MOOCA02 Two Beam Test Stand Experiments in the CTF3 Facility 29
 
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • J. Barranco, S. Bettoni, B. Constance, R. Corsini, M. Csatari, S. Döbert, A. Dubrovskiy, C. Heßler, T. Persson, G. Riddone, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • D. Gudkov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • M. Jacewicz, T. Muranaka, A. Palaia, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  The CLEX build­ing in the CTF3 fa­cil­i­ty is the place where es­sen­tial ex­per­i­ments are per­formed to val­i­date the Two-Beam Ac­cel­er­a­tion scheme upon which the CLIC pro­ject re­lies. The Drive Beam en­ters the CLEX after being re­com­bined in the Delay loop and the Com­bin­er Ring in in­tense beam trains of 24 A – 150 MeV last­ing 140 ns and bunched at 12 GHz, al­though other beam pa­ram­e­ters are also ac­ces­si­ble. This beam is then de­cel­er­at­ed in ded­i­cat­ed struc­tures in­stalled in the Test Beam Line (TBL) and in the Two-Beam Test Stand (TBTS) aimed at de­liv­er­ing bursts of 12 GHz RF power. In the TBTS this power is used to gen­er­ate a high ac­cel­er­at­ing gra­di­ent of 100 MV/m in spe­cial­ly de­signed ac­cel­er­at­ing struc­tures. To as­sess the per­for­mances of these struc­tures a probe beam is used, pro­duced by a small Linac. We re­port­ed here the var­i­ous ex­pe­ri­ences con­duct­ed in the TBTS mak­ing use of the ver­sa­til­i­ty the probe beam and of ded­i­cat­ed di­ag­nos­tics.  
slides icon Slides MOOCA02 [3.003 MB]  
 
TUPC022 Design of the CLIC Drive Beam Recombination Complex 1045
 
  • J. Barranco, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • C. Biscari
    INFN/LNF, Frascati (Roma), Italy
 
  The CLIC Drive Beam Re­com­bi­na­tion Com­plex (DBRC) is de­signed to com­press beam puls­es from a cur­rent of 4.1 A to 100 A be­fore using them to pro­duce RF power in the de­cel­er­a­tion lines. The beam is trans­port­ed isochronous­ly through a com­plex sys­tem con­sist­ing of a delay loop, two com­bin­er rings and final turn around. The sys­tem is de­signed to pre­serve trans­verse and lon­gi­tu­di­nal emit­tances. Dur­ing the op­tics de­sign, chro­matic­i­ty and non-lin­ear dis­per­sion were iden­ti­fied as the main sin­gle par­ti­cle dy­nam­ics caus­es for trans­verse emit­tance in­crease. Dif­fer­ent sex­tupole fam­i­lies are used to com­pen­sate these chro­mat­ic ef­fects while keep­ing isochronic­i­ty. The bunch length is also ad­just­ed to min­i­mize co­her­ent syn­chrotron ra­di­a­tion ef­fects on bunch length, en­er­gy spread and trans­verse emit­tance. Fi­nal­ly, the in­jec­tion scheme of the com­bin­er rings was im­proved mak­ing the time vari­able bump cre­at­ed with help of the RF de­flec­tors truly achro­mat­ic.  
 
TUPC021 The CLIC Feasibility Demonstration in CTF3 1042
 
  • P.K. Skowroński, J. Barranco, S. Bettoni, B. Constance, R. Corsini, A.E. Dabrowski, M. Divall Csatari, S. Döbert, A. Dubrovskiy, O. Kononenko, M. Olvegård, T. Persson, A. Rabiller, F. Tecker
    CERN, Geneva, Switzerland
  • E. Adli
    University of Oslo, Oslo, Norway
  • W. Farabolini
    CEA/DSM/IRFU, France
  • R.L. Lillestol
    NTNU, Trondheim, Norway
  • T. Muranaka, A. Palaia, R.J.M.Y. Ruber
    Uppsala University, Uppsala, Sweden
 
  The ob­jec­tive of the CLIC Test Fa­cil­i­ty CTF3 is to demon­strate the fea­si­bil­i­ty is­sues of the CLIC two-beam tech­nol­o­gy: the ef­fi­cient gen­er­a­tion of a very high cur­rent drive beam, used as the power source to ac­cel­er­ate the main beam to mul­ti-TeV en­er­gies with gra­di­ent over 100MeV/m, sta­ble drive beam de­cel­er­a­tion over long dis­tances. Re­sults on suc­cess­ful beam ac­cel­er­a­tion with over 100 MeV/m en­er­gy gain are shown. Mea­sure­ments of drive beam de­cel­er­a­tion over a chain of Power Ex­trac­tion Struc­tures are pre­sent­ed. The achieved RF power lev­els, the sta­bil­i­ty of the power pro­duc­tion and of the de­cel­er­a­tion are dis­cussed. Fi­nal­ly, we overview the re­main­ing is­sues to be shown until the end of 2011.