Paper | Title | Page |
---|---|---|
WEOBB02 | Bunch Length Diagnostic with Sub-femtosecond Resolution for High Brightness Electron Beams | 1967 |
|
||
Next generation light sources require electron beams with high peak currents, typically achieved by compression techniques. The temporal diagnosis of these ultra-short beams demands enhanced resolution. We describe a scheme to achieve a temporal resolution on the order of sub-femtoseconds. The scheme is based on encoding the longitudinal profile of the beam on a transverse angular modulation, based on an interaction between the electron beam and a high-power laser in an undulator. This imposes a fast-sweep of the beam, on the order of sub-femtoseconds. A subsequent sweep in the orthogonal dimension by an rf deflecting cavity, imposes a "slow-sweep" on the order of sub-picoseconds. In this paper, we demonstrate applicability of this diagnostic scheme at the BNL ATF and specify the techniques required for practical applicability. | ||
![]() |
Slides WEOBB02 [1.120 MB] | |
WEPC137 | Undulator Radiation Simulation by QUINDI | 2316 |
|
||
QUINDI, a code developed to simulate coherent emission from bending systems, has been upgraded to include undulators as a beamline element. This approach allows us to better model the radiation produced by a relativistic electron bunch propagating through such a device. | ||
WEPZ034 | Double Resosnant Plasma Wakefields | 2838 |
|
||
Present work in Laser Plasma Accelerators focuses on a single laser pulse driving a non-linear wake in a plasma. Such single pulse regimes require ever increasing laser power in order to excite ever increasing wake amplitudes. Such high intensity pulses can be limited by instabilities as well engineering restrictions and experimental constraints on optics. Alternatively we present a look at resonantly driving plasmas using a laser pulse train. In particular we compare analytic, numerical and VORPAL simulation results to characterize a proposed experiment to measure the wake resonantly driven by four Gaussian laser pulses. The current progress depicts the interaction of 4 CO2 laser pulses, λlaser = 10.6μm, of 3 ps full width at half max- imum (FWHM) length separated peak-to-peak by 18 ps, each of normalized vector potential a0 ≃ 0.7. Results con- firm previous discourse (*,**) and show, for a given laser pro- file, an accelerating field on the order of 900 MV/m, for a plasma satisfying the resonant condition, ωp=π/tfwhm.
* Umstadter, D., et al, Phys. Rev. Lett. 72, 1224 ** Umstadter, D., et al, Phys. Rev. E 51, 3484 |
||
THPC101 | Fitting Formulas for Space-charge Dominated Free-electron Lasers | 3122 |
|
||
A simple power-fit formula for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime has been obtained. This tool allows for quick evaluation of the free-electron laser performance in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. Here, we use it to evaluate the performance of high-gain FEL amplifiers considered candidates as high average power light sources. Results are compared with detailed numerical particle simulations using the free-electron laser code Genesis. | ||
THPC102 | Production of Coherent Optical \vCerenkov Radiation in Silica Aerogel | 3125 |
|
||
As a demonstration of the apposite properties of silica aerogel as an electron beam diagnostic we intend to use it to produce coherent optical Cˇ erenkov radation (COCR). In this paper we propose an experiment and provide details of the challenges to be overcome in producing COCR. | ||
THPC100 | Full Temporal Reconstruction using an Advanced Longitudinal Diagnostic at the SPARC FEL | 3119 |
|
||
The Production of ultra-short (sub 100 fs) single-spike radiation possessing full longitudinal coherence from a free-electron laser (FEL) has been the subject of intense study. A Frequency-Resolved Optical Gating (FROG) diagnostic has been developed and tested at UCLA, which has the capability of providing a longitudinal reconstruction of these ultra-fast pulses. This paper reports the results of the application of the diagnostic at the SPARC FEL facility. | ||