Author: Pivi, M.T.F.
Paper Title Page
MOOCA03 Updates to the International Linear Collider Damping Rings Baseline Design 32
 
  • S. Guiducci, M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • G. Dugan, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • J. Gao, D. Wang
    IHEP Beijing, Beijing, People's Republic of China
  • M.T.F. Pivi, Y. Sun
    SLAC, Menlo Park, California, USA
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  A new base­line de­sign for the In­ter­na­tion­al Lin­ear Col­lid­er (ILC) damp­ing rings has been adopt­ed which re­duces the ring cir­cum­fer­ence to 3.2 km from 6.4 km. This de­sign change is as­so­ci­at­ed with a re­vised plan to op­er­ate the ILC with one half the beam cur­rent orig­i­nal­ly spec­i­fied in the ILC Ref­er­ence De­sign Re­port. We de­scribe the new lay­out and lat­tice that has been de­vel­oped for the short­er ring. In ad­di­tion, we dis­cuss fea­tures of the new de­sign that will allow op­er­a­tion at a 10Hz rep­e­ti­tion rate which is twice the rate spec­i­fied for base­line op­er­a­tion. Fi­nal­ly, we ex­am­ine the im­pli­ca­tions for restor­ing op­er­a­tion with the orig­i­nal­ly spec­i­fied beam cur­rent while main­tain­ing the small­er ring cir­cum­fer­ence.  
slides icon Slides MOOCA03 [2.381 MB]  
 
MOPS088 Simulation of Electron Cloud Beam Dynamics for CesrTA 808
 
  • K.G. Sonnad, G. Dugan, M.A. Palmer, G. Ramirez, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • K.R. Butler
    Cornell University, Ithaca, New York, USA
  • M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  This pre­sen­ta­tion pro­vides a com­pre­hen­sive set of re­sults ob­tained using the sim­u­la­tion pro­gram CMAD. CMAD is being used for study­ing elec­tron cloud in­duced beam dy­nam­ics is­sues for Ces­r­TA, which is a test fa­cil­i­ty for study­ing physics as­so­ci­at­ed with elec­tron and positron damp­ing rings. In par­tic­u­lar, we take a clos­er look at elec­tron cloud in­duced ef­fects on positron beams, in­clud­ing head-tail mo­tion, emit­tance growth and in­co­her­ent tune shifts for pa­ram­e­ters spe­cif­ic to on­go­ing ex­per­i­men­tal stud­ies at Ces­r­TA. The cor­re­spon­dence be­tween sim­u­la­tion and ex­per­i­men­tal re­sults will also be dis­cussed.
Work supported by US Department of Energy grant number DE-FC02-08ER41538
and the National Science Foundation grant number PHY-0734867
 
 
TUPC030 Recommendation for Mitigations of the Electron Cloud Instability in the ILC 1063
 
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California, USA
  • L.E. Boon, K.C. Harkay
    ANL, Argonne, USA
  • J.A. Crittenden, G. Dugan, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • T. Demma, S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Furman
    LBNL, Berkeley, California, USA
  • K. Ohmi, K. Shibata, Y. Suetsugu, J. Urakawa
    KEK, Ibaraki, Japan
  • C. Yin Vallgren
    Chalmers University of Technology, Chalmers Tekniska Högskola, Gothenburg, Sweden
 
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U.S. DOE under Contract No. DE-AC02-76SF00515.
Elec­tron cloud has been iden­ti­fied as one of the high­est pri­or­i­ty is­sues for the ILC Damp­ing Rings (DR). A work­ing group has eval­u­at­ed the elec­tron cloud ef­fect and in­sta­bil­i­ty, and mit­i­ga­tion so­lu­tions for the elec­tron cloud for­ma­tion. Work­ing group de­liv­er­ables in­clude rec­om­men­da­tions for the base­line and al­ter­nate so­lu­tions for the elec­tron cloud mit­i­ga­tion in var­i­ous re­gions of the ILC Positron DR, which is present­ly as­sumed to be the 3.2km de­sign. De­tailed stud­ies of a range of mit­i­ga­tion op­tions in­clud­ing coat­ings, clear­ing elec­trodes, grooves and novel con­cepts, were car­ried out over the pre­vi­ous sev­er­al years by near­ly 50 re­searchers, and the re­sults of the stud­ies form the basis for the rec­om­men­da­tion. The as­sess­ments of the ben­e­fits or risks as­so­ci­at­ed with the var­i­ous op­tions were based on a sys­tem­at­ic rank­ing scheme. The rec­om­men­da­tions are the re­sult of the work­ing group dis­cus­sions held at nu­mer­ous meet­ings and dur­ing a ded­i­cat­ed work­shop. The mit­i­ga­tion choic­es will be also pre­sent­ed in a more de­tailed re­port later in 2012. In ad­di­tion, a num­ber of items re­quir­ing fur­ther in­ves­ti­ga­tion were iden­ti­fied and stud­ies will be car­ried out at Ces­r­TA and other in­sti­tu­tions.
 
 
WEPC105 Multiparticle Simulation of Intrabeam Scattering for SuperB 2259
 
  • T. Demma, M.E. Biagini, M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • K.L.F. Bane, A. Chao, M.T.F. Pivi
    SLAC, Menlo Park, California, USA
 
  In­tra­beam scat­ter­ing (IBS) is as­so­ci­at­ed with mul­ti­ple small angle scat­ter­ing events lead­ing to emit­tance growth. In most elec­tron stor­age rings, the growth rates aris­ing from IBS are much longer than damp­ing times due to syn­chrotron ra­di­a­tion, and the ef­fect on emit­tance growth is neg­li­gi­ble. How­ev­er, IBS growth rates in­crease with in­creas­ing bunch charge den­si­ty, and for stor­age rings such as Su­perB, that op­er­ate with high bunch charges and very low ver­ti­cal emit­tance, the IBS growth rates can be large enough to pro­duce sig­nif­i­cant emit­tance in­crease. Sev­er­al for­malisms have been de­vel­oped for cal­cu­lat­ing IBS growth rates in stor­age rings*. How­ev­er these mod­els, based on Gaus­sian bunch dis­tri­bu­tions, can­not in­ves­ti­gate some in­ter­est­ing as­pects of IBS such as its evo­lu­tion dur­ing the damp­ing pro­cess and its ef­fect on the beam dis­tri­bu­tion. We de­vel­oped a mul­ti­par­ti­cle track­ing code, based on the Bi­na­ry Col­li­sion Model**, to in­ves­ti­gate these ef­fects. In this com­mu­ni­ca­tion we pre­sent the struc­ture of the code and sim­u­la­tion re­sults ob­tained with par­tic­u­lar ref­er­ence to the Su­perB pa­ram­e­ters. Sim­u­la­tion re­sults are com­pared with those of con­ven­tion­al IBS the­o­ries.
* A. Piwinski, Lect. Notes Phys. 296 (1988); J.D. Bjorken and S.K. Mtingwa, Part. Accel. 13 (1983); K. Kubo et al., Phys. Rev. ST-AB 8 (2005).
** Peicheng Yu et al., Phys. Rev. ST–AB 12 (2009).
 
 
WEPZ017 ESTB: A New Beam Test Facility at SLAC 2808
 
  • M.T.F. Pivi, H. Fieguth, C. Hast, R.H. Iverson, J. Jaros, R.K. Jobe, L. Keller, T.V.M. Maruyama, D.R. Walz, M. Woods
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U.S. DOE under Contract No. DE-AC02-76SF00515.
End Sta­tion A Test Beam (ESTB) is a beam line at SLAC using a small frac­tion of the bunch­es of the 13.6 GeV elec­tron beam from the Linac Co­her­ent Light Source (LCLS), restor­ing test beam ca­pa­bil­i­ties in the large End Sta­tion A (ESA) ex­per­i­men­tal hall. ESTB will pro­vide one of a kind test beam es­sen­tial for de­vel­op­ing ac­cel­er­a­tor in­stru­men­ta­tion and ac­cel­er­a­tor R&D, per­form­ing par­ti­cle and par­ti­cle as­tro­physics de­tec­tor re­search, lin­ear col­lid­er ma­chine and de­tec­tor in­ter­face (MDI) R&D stud­ies, de­vel­op­ment of ra­di­a­tion-hard de­tec­tors, and ma­te­ri­al dam­age stud­ies with sev­er­al dis­tinc­tive fea­tures. In the past, 18 in­sti­tu­tions par­tic­i­pat­ed in the ESA pro­gram at SLAC. In stage I, 4 new kick­er mag­nets will be added to di­vert 5 Hz of the LCLS beam to ESA. A new beam dump is in­stalled and a new Per­son­nel Pro­tec­tion Sys­tem (PPS) is built in ESA. In stage II, we plan to in­stall a sec­ondary hadron tar­get, able to pro­duce pions up to about 12 GeV/c at 1 par­ti­cle/pulse. We re­port about the ESTB com­mis­sion­ing, sta­tus and plan for tests.
 
 
MOPS083 Update on Electron Cloud Mitigation Studies at Cesr-TA* 796
 
  • J.R. Calvey, M.G. Billing, J.V. Conway, G. Dugan, S. Greenwald, Y. Li, X. Liu, J.A. Livezey, J. Makita, R.E. Meller, M.A. Palmer, S. Santos, R.M. Schwartz, J.P. Sikora, C.R. Strohman
    CLASSE, Ithaca, New York, USA
  • S. Calatroni, G. Rumolo
    CERN, Geneva, Switzerland
  • K. Kanazawa, Y. Suetsugu
    KEK, Ibaraki, Japan
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US National Science Foundation (PHY-0734867) and Department of Energy (DE-FC02-08ER41538)
Over the course of the past three years, the Cor­nell Elec­tron Stor­age Ring (CESR) has been re­con­fig­ured to serve as a test fa­cil­i­ty for next gen­er­a­tion par­ti­cle ac­cel­er­a­tors. A sig­nif­i­cant part of this pro­gram has been the in­stal­la­tion of sev­er­al di­ag­nos­tic de­vices to mea­sure and quan­ti­fy the elec­tron cloud ef­fect, a po­ten­tial lim­it­ing fac­tor in these ma­chines. In par­tic­u­lar, more than 30 Re­tard­ing Field An­a­lyz­ers (RFAs) have been in­stalled in CESR. These de­vices mea­sure the local elec­tron cloud den­si­ty and en­er­gy dis­tri­bu­tion, and can be used to eval­u­ate the ef­fi­ca­cy of dif­fer­ent cloud mit­i­ga­tion tech­niques. This paper will pro­vide an overview of RFA re­sults ob­tained at Ces­r­TA over the past year, in­clud­ing mea­sure­ments taken as func­tion of bunch spac­ing and wig­gler mag­net­ic field. Un­der­stand­ing these re­sults pro­vides a great deal of in­sight into the be­hav­ior of the elec­tron cloud.
 
 
THPZ003 The SuperB Project: Accelerator Status and R&D 3684
 
  • M.E. Biagini, S. Bini, R. Boni, M. Boscolo, B. Buonomo, T. Demma, E. Di Pasquale, A. Drago, L.G. Foggetta, S. Guiducci, S.M. Liuzzo, G. Mazzitelli, L. Pellegrino, M.A. Preger, P. Raimondi, U. Rotundo, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac, O. Bourrion, J.-M. De Conto, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, R.C. Field, A.S. Fisher, D. Kharakh, A. Krasnykh, K.C. Moffeit, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J.T. Seeman, M.K. Sullivan, S.P. Weathersby, A.W. Weidemann, U. Wienands, W. Wittmer, G. Yocky
    SLAC, Menlo Park, California, USA
  • S. Bettoni
    PSI, Villigen, Switzerland
  • A.V. Bogomyagkov, I. Koop, E.B. Levichev, S.A. Nikitin, I.N. Okunev, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, M. Esposito
    CERN, Geneva, Switzerland
  • F. Bosi
    INFN-Pisa, Pisa, Italy
  • L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • C. Rimbault, A. Variola
    LAL, Orsay, France
  • Y. Zhang
    IHEP Beijing, Beijing, People's Republic of China
 
  The Su­perB col­lid­er pro­ject has been re­cent­ly ap­proved by the Ital­ian Gov­ern­ment as part of the Na­tion­al Re­search Plan. Su­perB is a high lu­mi­nos­i­ty (1036 cm-2 s-1) asym­met­ric e+e col­lid­er at the Y(4S) en­er­gy. The de­sign is based on a “large Pi­win­s­ki angle and Crab Waist” scheme al­ready suc­cess­ful­ly test­ed at the DAΦNE Phi-Fac­to­ry in Fras­cati, Italy. The pro­ject com­bines the chal­lenges of high lu­mi­nos­i­ty col­lid­ers and state-of-the-art syn­chrotron light sources, with two beams (e+ at 6.7 and e- at 4.2 GeV) with ex­treme­ly low emit­tances and small beam sizes at the In­ter­ac­tion Point. As unique fea­tures, the elec­tron beam will be lon­gi­tu­di­nal­ly po­lar­ized at the IP and the rings will be able to ramp down to col­lide at the tau/charm en­er­gy thresh­old with one tenth the lu­mi­nos­i­ty. The rel­a­tive­ly low beam cur­rents (about 2 A) will allow for low run­ning (power) costs com­pared to sim­i­lar ma­chines. The in­ser­tion of beam lines for syn­chrotron ra­di­a­tion users is the lat­est fea­ture in­clud­ed in the de­sign. The lat­tice has been re­cent­ly mod­i­fied to ac­com­mo­date in­ser­tion de­vices for X-rays pro­duc­tion. A sta­tus of the pro­ject and a de­scrip­tion of R&D in progress will be pre­sent­ed.