Paper | Title | Page |
---|---|---|
MOOCA03 | Updates to the International Linear Collider Damping Rings Baseline Design | 32 |
|
||
A new baseline design for the International Linear Collider (ILC) damping rings has been adopted which reduces the ring circumference to 3.2 km from 6.4 km. This design change is associated with a revised plan to operate the ILC with one half the beam current originally specified in the ILC Reference Design Report. We describe the new layout and lattice that has been developed for the shorter ring. In addition, we discuss features of the new design that will allow operation at a 10Hz repetition rate which is twice the rate specified for baseline operation. Finally, we examine the implications for restoring operation with the originally specified beam current while maintaining the smaller ring circumference. | ||
![]() |
Slides MOOCA03 [2.381 MB] | |
MOPS084 | Status of Electron Cloud Dynamics Measurements at CESRTA* | 799 |
|
||
Funding: Supported by US National Science Foundation (PHY-0734867) & Dept. of Energy (DE-FC02-08ER41538) The study of electron cloud-related instabilities for the CESR-TA project permits the observation of the interaction of the electron cloud with the stored beam under a variety of accelerator conditions. These measurements are undertaken utilizing automatic and semi-automatic techniques for three basic observations: the measurement of tune shifts of individual bunches along a train, the detection of the coherent self-excited spectrum for each bunch within a train and the pulsed excitation of either the betatron dipole or head-tail mode for each individual bunch within the train, followed by the observation of the damping of its coherent motion. These techniques are employed to study the electron cloud-related interactions in a number of conditions, such as trains of bunches with low emittance and spaced by as little as 4 nsec between bunches. We report on the most recent observations and results. |
||
MOPS088 | Simulation of Electron Cloud Beam Dynamics for CesrTA | 808 |
|
||
This presentation provides a comprehensive set of results obtained using the simulation program CMAD. CMAD is being used for studying electron cloud induced beam dynamics issues for CesrTA, which is a test facility for studying physics associated with electron and positron damping rings. In particular, we take a closer look at electron cloud induced effects on positron beams, including head-tail motion, emittance growth and incoherent tune shifts for parameters specific to ongoing experimental studies at CesrTA. The correspondence between simulation and experimental results will also be discussed.
Work supported by US Department of Energy grant number DE-FC02-08ER41538 and the National Science Foundation grant number PHY-0734867 |
||
TUPC030 | Recommendation for Mitigations of the Electron Cloud Instability in the ILC | 1063 |
|
||
Funding: Work supported by the Director, Office of Science, High Energy Physics, U.S. DOE under Contract No. DE-AC02-76SF00515. Electron cloud has been identified as one of the highest priority issues for the ILC Damping Rings (DR). A working group has evaluated the electron cloud effect and instability, and mitigation solutions for the electron cloud formation. Working group deliverables include recommendations for the baseline and alternate solutions for the electron cloud mitigation in various regions of the ILC Positron DR, which is presently assumed to be the 3.2km design. Detailed studies of a range of mitigation options including coatings, clearing electrodes, grooves and novel concepts, were carried out over the previous several years by nearly 50 researchers, and the results of the studies form the basis for the recommendation. The assessments of the benefits or risks associated with the various options were based on a systematic ranking scheme. The recommendations are the result of the working group discussions held at numerous meetings and during a dedicated workshop. The mitigation choices will be also presented in a more detailed report later in 2012. In addition, a number of items requiring further investigation were identified and studies will be carried out at CesrTA and other institutions. |
||
TUPC170 | Resonant TE Wave Measurements of Electron Cloud Densities at CesrTA | 1434 |
|
||
Funding: This work is supported by the US National Science Foundation PHY-0734867, and the US Department of Energy DE-FC02-08ER41538. The Cornell Electron Storage Ring has been reconfigured as a test accelerator (CesrTA). Measurements of electron cloud densities have been made at CesrTA using the TE Wave transmission technique. However, interpretation of the data based on single pass transmission is problematic because of the reflections and standing waves produced by discontinuities in the beam pipe - from pumps, bellows, etc. that are normally present in an accelerator vacuum chamber. An alternative model is that of a resonant cavity, formed by the beampipe and its discontinuities. The theory for the measurement of plasma densities in cavities is well established. This paper will apply this theory to electron cloud measurements, present some simplified measurements on waveguide, and apply this model to the interpretation of some of the data taken at CesrTA. |
||
WEPC135 | Recent Developments in Modeling Time-resolved Shielded-pickup Measurements of Electron Cloud Buildup at CESRTA | 2313 |
|
||
Funding: Work supported by the U.S. National Science Foundation PHY-0734867, PHY-1002467 and the U.S. Department of Energy DE-FC02-08ER41538 The Cornell Electron Storage Ring Test Accelerator program includes investigations into the mitigation of electron cloud buildup using a variety of techniques in custom vacuum chambers. The CESR ring accommodates two such chambers equipped with BPM-style pickup detectors shielded against the direct beam-induced signal. The signals provide time-resolved information on cloud development. Results for diamond-like carbon, amorphous carbon, and TiN coatings have been compared to those for an uncoated aluminum chamber. Here we report on extensions to the ECLOUD modeling code which refine its description of a variety of new types of in situ vacuum chamber comparisons. Our results highlight the sensitivity afforded by these measurements to the modeled photoelectron production and secondary yield parameters. We draw conclusions comparing the photoelectron and secondary yield properties of the various vacuum chamber coatings, including conditioning effects as a function of synchrotron radiation dose. We find substantial conditioning effects in both the quantum efficiency for producing photoelectrons and in the secondary yield. |
||
MOPS083 | Update on Electron Cloud Mitigation Studies at Cesr-TA* | 796 |
|
||
Funding: Work supported by the US National Science Foundation (PHY-0734867) and Department of Energy (DE-FC02-08ER41538) Over the course of the past three years, the Cornell Electron Storage Ring (CESR) has been reconfigured to serve as a test facility for next generation particle accelerators. A significant part of this program has been the installation of several diagnostic devices to measure and quantify the electron cloud effect, a potential limiting factor in these machines. In particular, more than 30 Retarding Field Analyzers (RFAs) have been installed in CESR. These devices measure the local electron cloud density and energy distribution, and can be used to evaluate the efficacy of different cloud mitigation techniques. This paper will provide an overview of RFA results obtained at CesrTA over the past year, including measurements taken as function of bunch spacing and wiggler magnetic field. Understanding these results provides a great deal of insight into the behavior of the electron cloud. |
||