Paper | Title | Page |
---|---|---|
MOPC013 | Design, Fabrication and High Power RF Test of a C-band Accelerating Structure for Feasibility Study of the SPARC Photo-injector Energy Upgrade | 89 |
|
||
The energy upgrade of the SPARC photo-injector from 170 to 250 MeV will be done by replacing a low gradient 3m S-Band structure with two 1.5m high gradient C-band structures. The structures are traveling wave, constant impedance sections, have symmetric waveguide input couplers and have been optimized to work with a SLED RF input pulse. A prototype with a reduced number of cells has been fabricated and tested at high power in KEK (Japan) giving very good performances in terms of breakdown rates at high accelerating gradient (>50 MV/m). The paper illustrates the design criteria of the structures, the fabrication procedure and the high power RF test results. | ||
WEPC142 | High Performance Web Applications for Particle Accelerator Control Systems | 2322 |
|
||
The integration of web technologies and applications has been one of the major trends for the development of new services for control systems of particle accelerators and large experimental apparatuses. Nowadays, high performance web technologies exhibit some features that would allow their deeper integration in a control system and their employment in developing control system's core components. In this paper we discuss the results of preliminary investigations of a new paradigm for a particle accelerator control system and associated machine data acquisition system based on a synergic combination of network distributed cache memory and a non-relational key/value database. Storage speed, network memory data retrieve throughput and database queries execution, as well as scalability and redundancy of the systems, are presented and critically reviewed. | ||
![]() |
Poster WEPC142 [8.902 MB] | |
THYB01 | Advanced Beam Manipulation Techniques at SPARC | 2877 |
|
||
SPARC in Frascati is a high brightness photo-injector used to drive Free Electron Laser experiments and explore advanced beam manipulation techniques. The R&D effort made for the optimization of the beam parameters will be presented here, together with the major experimental results achieved. In particular, we will focus on the generation of sub-picosecond, high brightness electron bunch trains via velocity bunching technique (the so called comb beam). Such bunch trains can be used to drive tunable and narrow band THz sources, FELs and plasma wake field accelerators. | ||
![]() |
Slides THYB01 [20.772 MB] | |
TUPO008 | Electron Linac Optimization for Driving Bright Gamma-ray Sources based on Compton Back-scattering | 1461 |
|
||
We study the optimal lay-out and RF frequency for a room temperature GeV-class Electron Linac aiming at producing electron beams that enhance gamma-ray sources based on Compton back-scattering. These emerging novel sources, generating tunable, mono-chromatic, bright photon beams in the range of 5-20 MeV for nuclear physics as well as nuclear engineering, rely on both, high quality electron beams and J-class high repetition-rate synchronized laser systems in order to achieve the maximum spectral density of the gamma-ray beam (# photons/sec/eV). The best option among the conventionally used RF linac-bands (S, C, X) and possible hybrid schemes will be analyzed and discussed, focusing the study in terms of best performances for the gamma-ray source, its reliability and compactness. We show that the best possible candidates for a Gamma-ray driver are quite similar to those of FEL Linacs. | ||
THPC100 | Full Temporal Reconstruction using an Advanced Longitudinal Diagnostic at the SPARC FEL | 3119 |
|
||
The Production of ultra-short (sub 100 fs) single-spike radiation possessing full longitudinal coherence from a free-electron laser (FEL) has been the subject of intense study. A Frequency-Resolved Optical Gating (FROG) diagnostic has been developed and tested at UCLA, which has the capability of providing a longitudinal reconstruction of these ultra-fast pulses. This paper reports the results of the application of the diagnostic at the SPARC FEL facility. | ||
THPS101 | Present and Perspectives of the Sparc THz Source | 3669 |
|
||
The development of radiation sources in the THz spectral region has become more and more interesting because of the peculiar characteristics of this radiation: it is non ionizing, it penetrates dielectrics, it is highly absorbed by polar liquids, highly reflected by metals and reveals specific "fingerprint" absorption spectra arising from fundamentals physical processes. The THz source at SPARC is an accelerator based source for research investigations (e.g. material science, biology fields). Its measured peak power is of the order of 108 W, very competitive with respect to other present sources. The present status of the source is presented and future perspectives are presented. | ||
THPZ004 | DAΦNE Tune-up for the KLOE-2 Experiment | 3687 |
|
||
Funding: Work supported by the EuCARD research programme within the 'Assessment of Novel Accelerator Concepts' work package (ANAC-WP11). In its continuous evolution DAΦNE, the Frascati lepton collider, is starting a new run for the KLOE-2 experiment, an upgraded version of the KLOE one. A new interaction region, based on the high luminosity Crab-Waist collision scheme, has been designed, built and installed. Several machine subsystems have been revised according to innovative design concepts in order to improve beam dynamics. Collimators and shieldings have been upgraded in order to minimize the background rates on the detector during coasting as well as injection operation. A wide measurement campaign has been undertaken to verify and quantify the effect of the modifications and to tune-up the collider in view of the 3 years long data-taking foreseen to deliver ~5 fb-1 to the experiment. |
||