Author: Bruhwiler, D.L.
Paper Title Page
WEPZ034 Double Resosnant Plasma Wakefields 2838
 
  • B.D. O'Shea, A. Fukasawa, B. Hidding, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • D.L. Bruhwiler
    Tech-X, Boulder, Colorado, USA
 
  Pre­sent work in Laser Plas­ma Ac­cel­er­a­tors fo­cus­es on a sin­gle laser pulse driv­ing a non-lin­ear wake in a plas­ma. Such sin­gle pulse regimes re­quire ever in­creas­ing laser power in order to ex­cite ever in­creas­ing wake am­pli­tudes. Such high in­ten­si­ty puls­es can be lim­it­ed by in­sta­bil­i­ties as well en­gi­neer­ing re­stric­tions and ex­per­i­men­tal con­straints on op­tics. Al­ter­na­tive­ly we pre­sent a look at res­o­nant­ly driv­ing plas­mas using a laser pulse train. In par­tic­u­lar we com­pare an­a­lyt­ic, nu­mer­i­cal and VOR­PAL sim­u­la­tion re­sults to char­ac­ter­ize a pro­posed ex­per­i­ment to mea­sure the wake res­o­nant­ly driv­en by four Gaus­sian laser puls­es. The cur­rent progress de­picts the in­ter­ac­tion of 4 CO2 laser puls­es, λlaser = 10.6μm, of 3 ps full width at half max- imum (FWHM) length sep­a­rat­ed peak-to-peak by 18 ps, each of nor­mal­ized vec­tor po­ten­tial a0 ≃ 0.7. Re­sults con- firm pre­vi­ous dis­course (*,**) and show, for a given laser pro- file, an ac­cel­er­at­ing field on the order of 900 MV/m, for a plas­ma sat­is­fy­ing the res­o­nant con­di­tion, ωp=π/tfwhm.
* Umstadter, D., et al, Phys. Rev. Lett. 72, 1224
** Umstadter, D., et al, Phys. Rev. E 51, 3484
 
 
THPS009 Coherent Electron Cooling Demonstration Experiment 3442
 
  • V. Litvinenko, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, W. Meng, T. Rao, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Co­her­ent elec­tron cool­ing (CEC) is con­sid­ered to be on of po­ten­tial can­di­dates ca­pa­ble of cool­ing high-en­er­gy, high-in­ten­si­ty hadron beams to very small emit­tances. It also has a po­ten­tial to sig­nif­i­cant­ly boost lu­mi­nos­i­ty of high-en­er­gy hadron-hadron and elec­tron-hadron col­lid­ers. In a CEC sys­tem, a per­tur­ba­tion of the elec­tron den­si­ty caused by a hadron is am­pli­fied and fed back to the hadrons to re­duce the en­er­gy spread and the emit­tance of the beam. Fol­low­ing the fund­ing de­ci­sion by DoE of­fice of Nu­cle­ar Physics, we are de­sign­ing and build­ing co­her­ent elec­tron cool­er for a proof-of-prin­ci­ple ex­per­i­ment at RHIC to cool 40 GeV heavy ion beam. In this paper, we de­scribe the lay­out of the CeC in­stalled into IP2 in­ter­ac­tion re­gion at RHIC. We pre­sent the de­sign of the CeC cool­er and re­sults of pre­lim­i­nary sim­u­la­tions.