Paper | Title | Page |
---|---|---|
TUPC025 | Calibration Errors in the Cavity Beam Position Monitor System at the ATF2 | 1051 |
|
||
It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied. | ||
TUPC158 | Micron-scale Laser-wire at the ATF-II at KEK Commissioning and Results | 1401 |
|
||
We present the first results from the commissioning of the upgraded laser-wire experiment at the Accelerator Test Facility 2 (ATF2) at KEK. A new laser transport line and beam diagnostics were used to collide 150 mJ, 167 ps long laser pulses with 1.28 GeV, 30 ps long electron bunches to measure the vertical transverse size. Additionally, a new detector was installed with a reduced area for lower background. Initial scans showing a convoluted beam size of 19.2 ± 0.2 microns were used to tune the electron beam optics and reduce this down to 8.1 ± 0.1 microns. Laser pulse energy and charge dependency were investigated showing a linear relationship in both with a minimum laser energy of 20 mJ required for observable signal with this laser and setup. | ||
TUPC164 | Position Determination of Closely Spaced Bunches using Cavity BPMs | 1419 |
|
||
Cavity Beam Position Monitor (BPM) systems with high-Q form a major part of precision position measurement diagnostics for linear accelerators with low emittance beam. Using cavity BPMs, the position resolution of less than 100 nm has been demonstrated in single bunch mode operation. In the case of closely spaced bunches, where the decay time of the cavity is comparable to the time separation between bunches, the BPM signal from a bunch is polluted by the signal induced from the previous bunches in the same bunch-train. This paper discuss our ongoing work to develop the methods to extract the position of the closely spaced bunches using cavity BPMs. A signal subtraction code is being developed to remove the signal pollution from previous bunches and to determine the individual bunch position. Another code has been developed to simulate the BPM data for the cross check. Performance of the code is studied on the experimental and simulated data. Application of the analysis techniques to the linear colliders, such as International Linear Collider (ILC) and Compact LInear Collider (CLIC), are briefly discussed. | ||
WEOBB01 | Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation | 1964 |
|
||
Optical Transition Radiation (OTR) appears when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in numerous facilities worldwide. The resolution of the conventional monitors is defined by the Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. For small electron beam dimensions, the PSF form significantly depends on various parameters of the optical system like diffraction of the OTR tails, spherical and chromatic aberrations, etc. In our experiment we managed to create a system which can practically measure the PSF distribution and using a new self-calibration method we are able to calculate transverse electron beam size. Here we represent the development, data analysis and novel calibration technique of a sub-micrometer electron beam profile monitor based on the measurements of the PSF shape, which OTR visibility is sensitive to micrometer electron beam dimensions. | ||
![]() |
Slides WEOBB01 [2.506 MB] | |
TUPC119 | A Comprehensive Study of Nanometer Resolution of the IPBPM at ATF2* | 1296 |
|
||
Funding: Work supported in part by Department of Energy Contract DE-AC02-76SF00515. High-resolution beam position monitors (IPBPMs) have been developed in order to measure the electron beam position at the focus point of ATF2 to a few nanometers in the vertical plane. To date, the IPBPM system has operated in test mode with a highest demonstrated resolution of 8.7 nm in the ATF extraction line during 2008. After expected noise source calculations there still remains 7.9 nm of noise of unexplained origin. We summarize the experimental work on the IPBPM system since this measurement and outline the possible origins of these sources. We then present a study plan to be performed at the ATF2 facility designed to identify and to improve the resolution performance and comment on the expected ultimate resolution of this system. |
||
TUPC161 | Cavity Beam Position Monitor System for ATF2 | 1410 |
|
||
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance. | ||